5.1 The test method results are suitable for use by manufacturers of colorants and bases for quality control purposes on manufactured product.5.2 The test method results are suitable for use by purchasers of colorants and bases for incoming quality control or the determination of money value of colorants and bases.1.1 This test method covers the determination of strength of colorant dispersions, colored and white bases, for architectural, marine, maintenance, commercial, and industrial coatings.1.2 This test method applies to colorant dispersions and colored and white bases regardless of the methods used to disperse these materials.1.3 The resultant test value is in terms of percent strength in which a material stronger than standard is implied by values larger than 100 % and weaker than standard is implied by values less than 100 %. The value of 100 % implies exact strength conformance to the test method.1.4 This test method is suitable for the determination of strength when tolerances are set about standards that are prepared either by weight concentration or volume concentration.1.5 The test result is empirically determined. The user determines and supplies the standard for strength of the product under test and the test result is relative to that supplied standard.1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
4.1 The test method provides information regarding the behavior of a non-structural A, B, or C-Class bulkhead panel system under a static load. Test data for load, moment and deformation is measured.4.2 Static load test of non-structural marine joiner panel systems provide a standard method of obtaining data for research and development, quality control, acceptance or rejection under specifications, and special purposes. The tests cannot be considered significant for engineering design in applications differing widely from the loading type and magnitude of the standard test. Such applications shall require additional tests.1.1 This test method covers a procedure for evaluating the strength of non structural marine joiner of A, B, and C-Class bulkhead and liner systems. A, B, and C-Class bulkheads are defined and discussed in 2.1.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 Effective antifouling coatings are essential for the retention of speed and reduction of operating costs of ships. This test method is designed as a screening test to evaluate antifouling coating systems under conditions of hydrodynamic stress caused by water flow alternated with static exposure to a fouling environment. A dynamic test is necessary because of the increasing availability of AF coatings that are designed to ablate in service to expose a fresh antifouling surface. Because no ship is underway continually, a static exposure phase is included to give fouling microorganisms the opportunity to attach under static conditions. After an initial 30-day static exposure, alternated 30-day dynamic and static exposures are recommended as a standard cycle. The initial static exposure is selected to represent vessels coming out of drydock and sitting pierside while work is being completed. This gives the paint time to lose any remaining solvents, complete curing, absorb water, and, in general, stabilize to the in-water environment.5.2 This test method is intended to provide a comparison with a control antifouling coating of known performance in protecting underwater portions of ships’ hulls. This test method gives an indication of the performance and anticipated service life of antifouling coatings for use on seagoing vessels. However, the degree of correlation between this test method and service performance has not been determined.1.1 This test method covers the determination of antifouling performance and reduction of thickness of marine antifouling (AF) coatings by erosion or ablation (see Section 3) under specified conditions of hydrodynamic shear stress in seawater alternated with static exposure in seawater. An antifouling coating system of known performance is included to serve as a control in antifouling studies.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazards statement, see Section 8.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 The test method allows the quantitation of chemical species at low levels in marine fuel oils and cutter stocks. A great many types and concentrations of chemical species are found in marine fuel oils. A root cause relationship between the presence of such species or their concentration in fuels and any failure modes allegedly induced by the use of these fuels has not been established. This test method is necessary to establish test conditions required for future ISO 8217:2010 as defined in section 5.5 and Annex B item (d). Additional compounds may be determined by using the same conditions and by selecting required mass spectral selected ions, accordingly.1.1 This test method covers the quantitative determination of a variety of chemical species in marine fuel oil (bunker fuel oil) by gas chromatography/mass spectrometry. By using the same conditions and by selecting required mass spectral selected ions, the test method may be used for the determination of other species than those for which precision statements and limits of detection have been established.1.2 An example list of chemical species for which a limit of quantification has been determined by means of this test method is given in Table 1.1.3 Other refinery hydrocarbon fractions and their mixtures may be tested using the same test method conditions. However, the precision of this test method reflects the compounds in Table 1.1.4 Results are reported to the nearest 1.0 mg/kg.1.5 The values stated in SI units are to be regarded as standard.1.5.1 Exception—Non-SI values are given for psig.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
This practice covers methods of testing, rating, and installation of internal combustion engine packages used in hazardous areas in marine applications. The purpose of this practice is to thermally rate engine packages, and provide additional installation recommendations to reduce the risk of igniting ignitable mixtures that may be present near the hazardous areas of marine vessels. In this specification, only a marine engine suitable for the service, designed and constructed in accordance with the requirements of 3.2.1, is considered. Thermal rating of the engine is determined by the actual readings of engine and exhausts system temperatures within hazardous areas, as defined by the requirements and references in Practices 2.2 and 2.3 or as designated by the authority.1.1 This practice covers the method of testing, rating and installation of internal combustion engine packages for use in hazardous areas in marine applications. The thermal rating of the engine is determined by the actual readings of engine and exhaust system temperatures within hazardous areas, as defined by references in Section 2 of this practice, or as designated by the authority having jurisdiction, or both. The goal of this practice is to thermally rate engine packages, and provide additional installation recommendations, in order to reduce the risk of igniting the ignitable mixtures that may be present within the hazardous areas of marine vessels.1.2 Only a marine engine suitable for the service, designed and constructed in conformance with the requirements of 3.1.2, is considered.1.3 The system of units in this practice shall be SI (metric) form, along with the standard (English) system equivalent placed in parentheses, for example, 20 °C (68 °F).1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 This practice provides a means of assuring that products supplied during ship construction and maintenance are substantially the same as the materials on which the original selection was based. The selection of a paint for shipboard use frequently involves laboratory and field evaluations of candidate materials as part of the specification process. When a paint is selected, it shall have the same composition and characteristics throughout the delivery period as the materials originally evaluated.5.1.1 When significant changes in composition or paint characteristics are observed, it is necessary to determine the cause of the change (production error or formulation change) and its impact on coating performance. Actions to take if a formulation change is required are specified in 6.5.5.2 This practice is not meant to cover all possible chemical or physical tests that may be used to identify a coating. Additional tests may be needed to meet specific user needs.5.3 This practice does not recommend specific tolerance limits for the tests indicated. Tolerance values need to be agreed upon by the coating supplier, the shipbuilder, and the ship’s owner.5.4 This practice does not establish critical attributes that must be controlled. These attributes are selected by the shipbuilder and the ship’s owner based on specific needs (for example, colors).1.1 This practice provides the quality control receipt inspection procedures for protective coatings (paints) procured for end item use on ships and other marine structures. The practice includes methods and procedures for verifying that coating materials received are within the range of physical and chemical characteristics as those originally specified and tested.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车