微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 345元 / 折扣价: 294

在线阅读 收 藏

4.1 These test methods provide a means to measure quantitatively the bond integrity between the outer layers of the transparency and the interlayer, or to measure the cohesive properties of the interlayer, under various loading conditions.4.2 These test methods provide empirical results useful for control purposes, correlation with service results, and as quality control tests for acceptance of production parts.4.3 Test results obtained on small, laboratory-size samples shown herein are indicative of full-size part capability, but not necessarily usable for design purposes.1.1 These test methods cover determination of the bond integrity of transparent laminates. The laminates are usually made of two or more glass or hard plastic sheets held together by an elastomeric material. These test methods are intended to provide a means of determining the strength of the bond between the glass or plastic and the elastomeric interlayer under various mechanical or thermal loading conditions.1.2 The test methods appear as follows:Test Methods SectionsTest Method A—Flatwise Bond Tensile Strength  5 – 11Test Method B—Interlaminar Shear Strength 12 – 17Test Method C—Creep Rupture 18 – 25Test Method D—Thermal Exposure 26 – 301.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is to be used as a quality control or quality assurance test. As a manufacturing quality control (MQC) test, it would generally be used by the geocomposite product manufacturer or fabricator. As a construction quality assurance (CQA) test, it would be used by certification or inspection organizations.5.2 This test method can also be used to verify if the adhesion or bond strength varies after exposure to various incubation media in durability or chemical resistance testing, or both.5.3 Whatever use is to be associated with the test, it should be understood that this is an index test.NOTE 2: There have been numerous attempts to relate the results of this test to the interface shearing resistance of the respective materials determined per Test Method D5321/D5321M. To date, no relationships have been established between the two properties.5.4 Test Method D7005/D7005M for determining the bond strength (ply adhesion) strength may be used as an acceptance test of commercial shipments of geocomposites, but caution is advised since information about between-laboratory precision is incomplete. Comparative tests as directed in 5.4.1 are advisable.5.4.1 In the case of a dispute arising from differences in reported test results when using the procedure in Test Method D7005/D7005M for acceptance of commercial shipments, the purchaser and the supplier should first confirm that the tests were conducted using comparable test parameters including specimen conditioning, grip faces, grip size, etc. Comparative tests should then be conducted to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of the material in question. The test specimens should be randomly assigned to each laboratory for testing. The average results from the two laboratories should be compared to the Student's t-test for unpaired data and an acceptable probability level chosen by the two parties before the testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and supplier must agree to interpret future test results in the light of the known bias. Refer to Practice D2905, Table 1.1.1 It has been widely discussed in the literature that bond strength of flexible multi-ply materials is difficult to measure with current technology. The above is recognized and accepted, since all known methods of measurement include the force required to bend the separated layers, in addition to that required to separate them. However, useful information can be obtained when one realizes that the bending force is included and that direct comparison between different materials, or even between the same materials of different thickness, cannot be made. Also, conditioning that affects the moduli of the plies will be reflected in the bond strength measurement.1.2 This index test method defines a procedure for comparing the bond strength or ply adhesion of geocomposites. The focus is on geotextiles bonded to geonets or other types of drainage cores, for example, geomats, geospacers, etc. Other possible uses are geotextiles adhered or bonded to themselves, geomembranes, geogrids, or other dissimilar materials. Various processes can make such laminates: adhesives, thermal bonding, stitch bonding, needling, spread coating, etc.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 11.1.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Laminates are made by bonding together two or more layers of material or materials, where each layer might be a single or multi-layer material. When the bonding agent is reactive and requires time to reach full performance, the bond strength is typically measured as a green (un-cured) bond and a cured bond. For processes that intentionally create a nonlaminated edge, that edge is generally used to initiate the bond strength measurement. The techniques described in this practice can be used to initiate separation of plies when a non-laminated edge is not present.1.1 This practice describes techniques for separating plies of laminates made from flexible materials such as cellulose, paper, plastic film, and foil to enable the measurement of the bond strength or ply adhesion of the laminate. This includes laminates made by various processes: adhesive laminates, extrusion coatings, extrusion laminates, and coextrusions.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information purposes only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 6.1.1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏
ASTM C1357-09 Standard Test Methods for Evaluating Masonry Bond Strength (Withdrawn 2016) Withdrawn, Replaced 发布日期 :  1970-01-01 实施日期 : 

This test method is intended for use in comparing the bond strengths (under the given conditions) of masonry mortars, as determined in accordance with Test Method C 1072.This test method could be used, for example, to check one aspect of the quality of mortar products after production, or to indicate the bond potential of a mortar product without requiring the product to be tested in combination with many different units.This test method uses controlled conditions of fabrication and curing that are not intended to represent field conditions.This test method uses standard concrete masonry units. Mortars are batched by weight equivalents of volume proportions and are mixed to a prescribed flow. Prisms are constructed using a jig and are bag-cured.Flexural bond strength determined by this test method shall not be interpreted as the flexural bond strength of a wall (because standard units are not used for wall construction), nor shall it be interpreted as an indication of extent of bond for purposes of water permeability evaluation.1.1 These test methods cover the evaluation of flexural bond strength, normal to the bed joints, of masonry built of manufactured masonry units, as determined in accordance with Test Method C 1072. Sampling and testing procedures are referenced, and terms are defined. Two different test methods are specified, each for a different purpose:1.1.1 The first test method is the “Test Method for Laboratory-Prepared Specimens.” Its purpose is to compare the bond strengths (under the given conditions) of masonry mortars. It could be used, for example, to check the quality of mortar products after production, or to indicate the bond strength (under the given conditions) of a mortar product without requiring the product to be tested in combination with many different units. It is not intended to represent field conditions. It uses standard concrete masonry units. Mortars are batched by weight equivalents of volume proportions and are mixed to a prescribed flow. Prisms are constructed using a jig and are bag-cured.Note 1—Standard fired clay masonry units are under development but are not now available. When their development is complete, they will be incorporated into these test methods.1.1.2 The second test method is the “Test Method for Field-Prepared Specimens.” Its purpose is to evaluate the bond strength (under the given conditions) of a particular unit-mortar combination, either for preconstruction evaluation of materials or for quality control purposes during construction. Mortars are batched conventionally, and the flow is not prescribed. Prisms are constructed conventionally (no jig) and are bag-cured.1.1.3 The two test methods are not consistent, nor are they intended to be. They are intended to be used for two different purposes. To make this clear, the two methods are presented separately.1.1.4 Appendix X1 suggests two possible criteria for assessing the bond strength values obtained using these test methods. These possible evaluation criteria are given for illustration only and are not mandatory.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This test method deals with the standard procedures for establishing the relative bond strength of steel reinforcing bars in concrete using beam-end specimens. This test method shall determine the effects of surface preparation or condition (such as bar coatings) on the bond strength of deformed steel reinforcing bars to concrete. The bond strengths obtained using this test method shall not be directly applicable to the design of reinforced concrete members. The beam-end test specimen shall be fabricated by casting, and conditioned by curing prior to tensile load test. The test system shall consist of the loading system, compression reaction plate, and bar displacement measurement device.1.1 This test method describes procedures to establish the relative bond strength of steel reinforcing bars in concrete.1.2 This test method is intended to determine the effects of surface preparation or condition (such as bar coatings) on the bond strength of deformed steel reinforcing bars (of sizes ranging from No. 3 to No. 11 [No. 10 to No. 36]) to concrete.1.3 The bond strengths obtained using this test method are not directly applicable to the design of reinforced concrete members.NOTE 1: The bond strengths obtained using this test method are generally higher than obtained in development or splice tests using beams with the same embedment lengths. The results obtained using this test method should only be used for comparisons with results for other reinforcing bars tested using this method.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in brackets are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The properties evaluated by this test method are intended to provide comparative information on the effects of fire-retardant chemical formulations and environmental conditions on the flexural properties and IB strength of FRSC panels.5.2 This practice uses a controlled elevated-temperature environment to produce temperature-induced losses in the mechanical properties of FRSC panels and untreated panels.5.3 Prediction of performance in natural environments has not been directly correlated with the results of this test method.5.4 The reproducibility of results in elevated-temperature exposure is highly dependent on the type of specimens tested and the evaluation criteria selected, as well as the control of the operating variables. In any testing program, sufficient replicates shall be included to establish the variability of the results. Variability is often observed when similar specimens are tested in different chambers even though the testing conditions are nominally similar and within the ranges specified in this test method.1.1 This test method is designed as a laboratory screening test. It is intended to establish an understanding of the respective contributions of the many wood material, fire-retardant, resin and processing variables, and their interactions, upon the mechanical properties of fire-retarded mat-formed wood structural composite (FRSC) panels as they affect flexural and internal bond (IB) performance and as they are often affected later during exposure to high temperature and humidity. Once the critical material and processing variables have been identified through these small-specimen laboratory screening tests, additional testing and evaluation shall be required to determine the effect of the treatment on the panel structural properties and the effect of exposure to high temperature on the properties of commercially produced FRSC panels. In this test method, treated structural composite panels are exposed to a temperature of 77°C (170°F) and at least 50% relative humidity.1.2 The purpose of the preliminary laboratory-based test method is to compare the flexural properties and IB strength of FRSC panels relative to untreated structural composite panels with otherwise identical manufacturing parameters. The results of tests conducted in accordance with this test method provide a reference point for estimating strength temperature relationships for preliminary purposes. They establish a starting point for subsequent full-scale testing of commercially produced FRSC panels.1.3 This test method does not cover testing and evaluation requirements necessary for product certification and qualification or the establishment of design value adjustment factors for FRSC panels.NOTE 1: One potentially confounding limitation of this preliminary screening test method is that it may be conducted with laboratory panels that may not necessarily represent commercial quality panels. A final qualification program should likely be conducted using commercial quality panels and the scope of the review should include evaluation of the effects of the treatment and elevated temperature exposure on all relevant mechanical properties of the commercially produced panel.1.4 This test method is not intended for use with structural plywood.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The strength developed by a bonding system that joins two regions of concrete is its most important property.AbstractThis test method covers the determination of the bond strength of epoxy-resin-base bonding systems for use with Portland-cement concrete. The test method covers bonding hardened concrete to hardened or freshly-mixed concrete. The bond strength is determined by using the epoxy system to bond together two equal sections of Portland-cement mortar cylinder. After suitable curing of the bonding agent, the test is performed by determining the compressive strength of the composite cylinder. Apparatus to mix Portland-cement mortar shall be as described, except for the sections on specimen molds, tamper, and testing machine. The molds shall be constructed in the form of right cylinders. A dummy section shall be machined of a hard material that is not attacked by Portland-cement mortar. The testing machine shall be as described. Laboratory conditions, materials, proportions, and procedures for mixing the Portland-cement mortar shall be tested to meet the requirements specified.1.1 This test method covers the determination of the bond strength of bonding systems for use with portland-cement concrete. This test method covers bonding hardened concrete to hardened or freshly-mixed concrete.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. A specific hazard statement is given in Section 9. (Warning —Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to exposed skin and tissue upon prolonged exposure.2)1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method details the standard procedures for the determination of the bond and cohesion of one-part elastomeric solvent release-type sealants after high- and low-temperature aging. The materials and apparatuses needed for this test procedure are an extension machine, a forced-draft type oven, a convection type oven, a freezer chest or cold box, mortar blocks, glass plates, aluminum alloy plates, and polyethylene spacer bars. This test method also requires the use of the following reagents: acetone or methyl ethyl ketone solvents; detergent solution; and distilled water.1.1 This test method determines the bond and cohesion of one-part, elastomeric, solvent release-type sealants after high- and low-temperature aging.1.2 The subcommittee with jurisdiction is not aware of any similar ISO standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: Currently there is no ISO standard similar to this test method.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

The bonding properties of adhesives are important for concrete repair applications. This test method provides a means to measure the adhesive characteristics of materials used to bond freshly mixed mortar to hardened concrete.In addition to providing information on bond strength, the location of failure is determined visually and is thus instructive regarding the weakest element in the composite tested.The bond strength that is measured is limited by the tensile strength of the base concrete and mortar. While an attempt has been made to choose materials that are strong enough to force a bond failure, there may be cases where failure occurs in concrete or mortar. In these situations, the actual bond strength exceeds the measured result.1.1 This test method covers the laboratory determination of the bond strength of adhesive systems used to adhere freshly mixed mortar to hardened portland-cement concrete.1.2 The values stated, in either SI units or other units shall be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore each system must be used independently of the other, without combining values in any way.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Values obtained by flexural tests can provide information with regard to the bond strength of the particular varnish, in combination with a particular wire, when measured under conditions described in this test method.1.1 This test method covers determination of the bond strength of an electrical insulating varnish when applied to a helical coil. The helical coil can be made from bare aluminum or copper wire or from film or fiber-insulated magnet wire. Helical coils made from bare aluminum or bare copper wire will yield values of bond strength for the varnish when applied to bare metal conductors. The use of film or fiber-insulated magnet wire will show values for that particular combination of insulation and varnish.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This practice shows the status of coal mine reclamation as outlined by each phase of reclamation that can result in bond release, according to SMCRA and 30 CFR Part 700, et seq (See OSM, Directive Reg-8). This practice is significant to the coal mining community because it provides uniformity of geospatial data pertaining to the reclamation and bond status throughout the United States.Within its area of exclusive jurisdiction, each RA is the authoritative data source (ADS) for coal mining spatial data that it creates and uses to regulate coal mining.This geospatial data standard will help ensure uniformity of data contributed by each RA and assist organizations in efforts to create, utilize, and share geospatial data relative to SMCRA and it will lead to better communications between state, tribal, and federal regulatory offices, the public and industry.Surface coal mining geospatial data, specifically to the status of the reclamation, shall be obtained from state, tribal, or federal regulatory authorities for each SCMO. The coal mining community encompasses all entities directly and indirectly affected by coal mining activities, including industry, environmental groups, the general public, and the government at all levels within the United States. Use of this standard will help create consistent maps and increase understanding of SCMO sites throughout the United States. This standard promotes the creation of well organized and easily accessible surface coal mining data, and it will facilitate better communication between state and federal offices, the public, industry, and environmental groups.In addition to defining the status of individual areas covered by a reclamation bond, use of this standard will identify the changes of the reclamation and bond status to individual mined areas as they change over time.The land reclamation and bond status datasets may appear to be incomplete for some RAs. In some instances the data may not have been compiled.This standard conforms to the definition of a Data Content Standard as promulgated by the U.S. Federal Geographic Data Committee (FGDC). Terminology and definitions for identifying geographical features and describing the data model has been adopted from the FGDC Spatial Data Transfer Standard (ANSI INCITS 320-1998 (R2003)) and the FGDC Framework Data Content Standard (FGDC Project 1574-D) and other geographic area boundaries.Although this standard is written specifically for the coal mining industry, its general purpose and content are applicable to other mining operations.1.1 This practice covers the minimum elements for the accurate location and description of geospatial data for defining the land reclamation and performance bond status of a permitted coal mine.1.1.1 Hereafter, reference to bond status means performance bond status.1.1.2 This practice addresses coal mining geospatial boundary data relative to the Surface Mining Control and Reclamation Act of 1977 (SMCRA), including interim and permanent program lands. This geospatial data shall be obtained from each state, tribal or federal (or combinations thereof) coal mining regulatory authority (RA) authorized under SMCRA to regulate surface coal mining operations (SCMO). Each RA shall be the authoritative data source (ADS) for coal mining geospatial data.1.1.3 As used in this practice, the land reclamation status of the surface areas of a permitted coal mining operation represents the area where coal removal and reclamation and related supporting activities has occurred, is occurring, or is planned and authorized by the RA within a defined SCMO.1.1.4 Not all RAs use the same SMCRA bond release phase definitions. For example, SMCRA uses three phases whereas some RAs use four phases.1.1.5 Participation in the compilation of spatial data is not uniform across RAs, which may affect completeness, both in terms of spatial data and associated attributes. For some RAs, this standard may not be applicable because features described herein do not occur within their area of responsibility.1.1.6 This standard is one of several in development related to SMCRA approved coal mining operations. Also under development is a terminology standard. Initial development of these standards is being done on an individual basis (See Practice D7384), however they may be consolidated to reduce repetition of information between them.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulator limitations prior to use.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Seven-wire steel strand is used in pre-tensioned and post-tensioned concrete construction.4.2 0.600 in. [15.24 mm] diameter, Grade 270 seven-wire steel strand is used to make prestressed ground anchors which are often bonded to cement grout.4.3 Manufacturing processes, subsequent handling, and storage conditions may influence the strand bond.4.4 The primary use of this test method is to establish the relative bond strength of 0.600 in. [15.24 mm] seven-wire steel strand.4.5 The relative bond strength is determined by recording the pullout force at a certain displacement of the strand.AbstractThis test method deals with the standard procedures for establishing the relative bond strength of Grade 270 prestressing steel strands of specified diameter in cement grout as used in prestressed ground anchors for evaluating the effects of manufacturing practices on bond strength. The bond strength values obtained shall not be used to design the bond strength of ground anchors that depend on field conditions. This test method is not intended to be used as a bond test for pretensioned concrete applications. The test specimen shall be cut from standard production coils and shall not be wiped or cleaned. Pull test shall be made in accordance with the method.1.1 This test method describes procedures to establish the relative bond strength of 0.600 in. [15.24 mm] diameter, Grade 270 [1860] seven-wire steel strand in cement grout as used in prestressed ground anchors for the purpose of evaluating the effects of manufacturing practices on bond strength.1.2 The bond strength values obtained are not intended to be used to design the bond length of ground anchors that depend on field conditions.1.3 This test method is not intended to be used as a bond test for prestressed concrete applications.1.4 The values stated in either inch-pound or SI units are to be regarded as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 The different combinations of SMD types, attachment medias, circuit substrates, plating options, and process variation can account for significant variation in test outcome.3.2 The SMD shear strength test is useful to manufacturers and users for determining the bond strength of the component to the membrane switch circuit.1.1 This test method covers the determination of the shear integrity of materials and procedures used to attach surface mount devices (SMD) to a membrane switch circuit.1.2 This test method is typically used to indicate the sufficient cure of conductive adhesive or underfill, or both. In general, this test method should be used prior to encapsulant. This test may also be used to demonstrate the Shear Force with encapsulation.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
43 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页