微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Acceptance Testing—This method of testing fabrics for resistance to pilling is not recommended for acceptance testing. If it is used for acceptance testing, it should be used with caution because interlaboratory data are not available. In some cases the purchaser and the supplier may have to test a commercial shipment of one or more specific materials by the best available method, even though the method has not been recommended for acceptance testing.5.1.1 If there are differences or practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, the test samples should be used that are as homogeneous as possible, drawn from the material from which the disparate test results were obtained, and randomly assigned in equal numbers to each laboratory for testing. Other materials with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 The pilling of textile fabrics is a very complex property because it is affected by many factors which may include type of fiber or blends, fiber dimensions, yarn and fabric construction, fabric finishing treatments and refurbishing method. Testing before refurbishing may be advisable. The pilling resistance of a specific fabric in actual wear varies more with general conditions of use and individual wearers than in replicate fabric specimens subjected to controlled laboratory tests. This experience should be borne in mind when adopting levels of acceptability for any series of standards.5.3 Pills vary appreciably in size and appearance and depend on the presence of lint and degree of color contrast. These factors are not evaluated when pilling is rated solely on the number of pills. The development of pills may be accompanied by other surface phenomena such as loss of cover, color change, or the development of fuzz. Since the overall acceptability of a specific fabric is dependent on both the characteristics of the pills and the other factors affecting surface appearance, it is suggested that fabrics tested in the laboratory be evaluated subjectively with regard to their acceptability and not rated solely on the number of pills developed. A series of standards, based on graduated degrees of surface change of the fabric type being tested, may be set up to provide a basis for subjective ratings. The visual standards are most advantageous when the laboratory test specimens correlate closely in appearance with worn fabrics and show a similar ratio of pills to fuzz. Counting the pills and weighing their number with respect to their size and contrast, as a combined measure of pilling resistance, is not recommended because of the excessive time required for counting, sizing, and calculation.5.4 The degree of fabric pilling is evaluated by comparing the tested specimens with visual standards, which may be actual fabrics or photographs of fabrics, showing a range of pilling resistance. The observed resistance to pilling is reported on an arbitrary scale ranging from 5 (no pilling) to 1 (very severe pilling).5.5 This test method is applicable to a wide variety of woven and knitted fabrics that vary in pilling propensity as a result of variations in fiber, yarn & fabric structure, and finish.1.1 This test method covers the determination of the propensity of a fabric to form pills and other related surface changes on textiles using the brush pilling tester. This procedure is generally intended to be used for upholstery, automotive, luggage and heavy duty uniform fabrics because it is highly abrasive. This does not, however, preclude it from being used for other types of fabrics. If unsure, comparison testing should be performed to ensure that this test method replicates pilling on the final product.NOTE 1: For other test methods for the pilling resistance of textiles, refer to Test Methods D3512/D3512M, D3514/D3514M, and D4970/D4970M.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Acceptance Testing—This method of testing fabrics for resistance to pilling is not recommended for acceptance testing. If it is used for acceptance testing, it should be used with caution because the between-laboratory precision is poor. In some cases the purchaser and the supplier may have to test a commercial shipment of one or more specific materials by the best available test method, even though the test method is not recommended for acceptance testing.5.1.1 If there are differences or practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, the test samples should be used that are as homogeneous as possible, drawn from the material from which the disparate test results were obtained, and randomly assigned in equal numbers to each laboratory for testing. Other materials with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results must be adjusted in consideration of the known bias.5.2 The pilling of textile fabrics is a very complex property because it is affected by many factors which may include type of fiber or blends, fiber dimensions, yarn and fabric construction, fabric finishing treatments and refurbishing method. Testing before refurbishing may be adviseable. The pilling resistance of a specific fabric in actual wear varies more with general conditions of use and individual wearers than in replicate fabric specimens subjected to controlled laboratory tests. This experience should be borne in mind when adopting levels of acceptability for any series of standards.5.3 Pills vary appreciably in size and appearance and depend on the presence of lint and degree of color contrast. These factors are not evaluated when pilling is rated solely on the number of pills. The development of pills may be accompanied by other surface phenomena such as loss of cover, color change, or the development of fuzz. Since the overall acceptability of a specific fabric is dependent on both the characteristics of the pills and the other factors affecting surface appearance, it is suggested that fabrics tested in the laboratory be evaluated subjectively with regard to their acceptability and not rated solely on the number of pills developed. A series of standards, based on graduated degrees of surface change of the fabric type being tested, may be set up to provide a basis for subjective ratings. The visual standards are most advantageous when the laboratory test specimens correlate closely in appearance with worn fabrics and show a similar ratio of pills to fuzz. Counting the pills and weighing their number with respect to their size and contrast, as a combined measure of pilling resistance, is not recommended because of the excessive time required for counting, sizing, and calculating.5.4 The degree of fabric pilling is evaluated by comparing the tested specimens with visual standards, which may be actual fabrics or photographs of fabrics, showing a range of pilling resistance. The observed resistance to pilling is reported on an arbitrary scale ranging from 5 (no pilling) to 1 (very severe pilling).5.5 This test method is applicable to a wide variety of woven and knitted fabrics that vary in pilling propensity as a result of variations in fiber, yarn and fabric structure, and finish.1.1 This test method covers the determination of the propensity of a fabric to form pills and other related surface changes on textiles using the random tumble pilling tester. The procedure is generally applicable to all types of woven and knitted apparel fabrics.NOTE 1: For other test methods for the pilling resistance of textiles, refer to Test Methods D3511/D3511M, D3514/D3514M, and D4970/D4970M.1.2 Some fabrics that have been treated with a silicone resin may not be satisfactorily tested by this procedure because the silicone resin may transfer onto the cork liners in the test chamber and cause erroneous results.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Acceptance Testing—This method of testing fabrics for resistance to pilling is not recommended for acceptance testing. If it is used for acceptance testing, it should be used with caution because interlaboratory data are not available. In some cases the purchaser and the supplier may have to test a commercial shipment of one or more specific materials by the best available method, even though the method has not been recommended for acceptance testing.5.1.1 If there is a disagreement arising from differences in values reported by the purchaser and the supplier when using Test Method D3514 for acceptance testing, the statistical bias, if any, between the laboratory of the purchaser and the laboratory of the supplier should be determined based on testing specimens randomly drawn from one sample of material of the type being evaluated. Competent statistical assistance is recommended for the investigation of bias. A minimum of two parties should take a group of test specimens which are as homogeneous as possible and which are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average test results from the two laboratories should be compared using an acceptable statistical protocol and probability level chosen by the two parties before the testing begins. Appropriate statistical disciplines for comparing data must be used when the purchaser and supplier cannot agree. If a bias is found, either its cause must be found and corrected, or the purchaser and the supplier must agree to interpret future test results with consideration for the known bias.5.2 The pilling of textile fabrics is a very complex property because it is affected by many factors which may include type of fiber or blends, fiber dimensions, yarn and fabric construction, and fabric finishing treatments. The pilling resistance of a specific fabric in actual wear varies more with general conditions of use and individual wearers than in replicate fabric specimens subjected to controlled laboratory tests. This experience should be borne in mind when adopting levels of acceptability for any series of standards.5.3 Finishes and fabric surface changes may exert a large effect on pilling. It is recommended that fabrics be tested after laundering or drycleaning, or both. Testing before refurbishing may also be advisable. Prior agreement between interested parties should determine the state of test.5.4 Pills vary appreciably in size and appearance and depend on the presence of lint and degree of color contrast. These factors are not evaluated when pilling is rated solely on the number of pills. The development of pills may be accompanied by other surface phenomena such as loss of cover, color change, or the development of fuzz. Since the overall acceptability of a specific fabric is dependent on both the characteristics of the pills and the other factors affecting surface appearance, it is suggested that fabrics tested in the laboratory be evaluated subjectively with regard to their acceptability and not rated solely on the number of pills developed. A series of standards, based on graduated degrees of surface change of the fabric type being tested, may be set up to provide a basis for subjective ratings. The visual standards are most advantageous when the laboratory test specimens correlate closely in appearance with worn fabrics and show a similar ratio of pills to fuzz. Counting the pills and weighting their number with respect to their size and contrast, as a combined measure of pilling resistance, is not recommended because of the excessive time required for counting, sizing, and calculation.5.5 The degree of fabric pilling is evaluated by comparing the tested specimens with visual standards, which may be actual fabrics or photographs of fabrics, showing a range of pilling resistance. The observed resistance to pilling is reported on an arbitrary scale ranging from 5 (no pilling) to 1 (very severe pilling).5.6 This test method is applicable to a wide variety of woven and knitted fabrics that vary in pilling propensity as a result of variations in fiber, yarn and fabric structure, and finish. The applicability of the test method to non-woven fabrics has not been determined.1.1 This test method covers the determination of the propensity of a fabric to form pills and other related surface changes on textiles using the Stoll Quartermaster Universal Wear Tester with the frosting attachment. The procedure is generally applicable to all types of woven and knitted fabrics.NOTE 1: For other current test methods of testing the pilling resistance of textiles, refer to Test Methods D3511/D3511M, D3512/D3512M, and D4970/D4970M.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 The fabric may be laundered or dry cleaned before testing.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method is particularly applicable to nonrigid thermoplastic sheeting or film made by the calender or extrusion process. The test gives an indication of lot-to-lot uniformity in regards to the degree of internal strains introduced during processing.4.2 The heating medium in this test method is air and does not necessarily yield the same results as Test Method D2732, which uses a liquid medium.4.3 Before proceeding with this test method, review the specifications of the material being tested, if available. Any test specimen preparation, conditioning, dimensions, or testing parameters, or combination thereof, covered in the relevant ASTM material specification shall take precedence over those mentioned in this test method. If there are no relevant ASTM material specifications, then the default conditions apply. Table 1 of Classification System D4000 lists the ASTM material standards that currently exist.1.1 This test method covers the measurement of changes in linear dimensions of nonrigid thermoplastic sheeting or film that result from exposure of the material to specified conditions of elevated temperature and time.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This test method and ISO 11501 address the same matter, but differ in technical content (and results cannot be directly compared between the two methods).1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Dimensional Change When Compacting and Sintering Metal Powders:5.1.1 The dimensional change value obtained under specified conditions of compacting and sintering is a material characteristic inherent in the powder.5.1.2 The test is useful for quality control of the dimensional change of a metal powder mixture, to measure compositional and processing changes and to guide in the production of PM parts.5.1.3 The absolute dimensional change may be used to classify powders or differentiate one type or grade from another, to evaluate additions to a powder mixture or to measure process changes, and to guide in the design of tooling.5.1.4 The comparative dimensional change is mainly used as a quality control test to measure variations between a lot or shipment of metal powder and a reference powder of the same material composition.5.1.5 Factors known to affect size change are the base metal powder grade; type and lot; particle size distribution; level and types of additions to the base metal powder; amount and type of lubricant, green density, as well as processing conditions of the test specimen; heating rate; sintering time and temperature; sintering atmosphere; and cooling rate.5.2 Dimensional Change of Various PM Processing Steps:5.2.1 The general procedure of measuring the die or a test compact before and after a PM processing step, and calculating a percent dimensional change, is also adapted for use as an internal process evaluation test to quantify green expansion, repressing size change, heat treatment changes, or other changes in dimensions that result from a manufacturing operation.1.1 This standard covers a test method that may be used to measure the sum of the changes in dimensions that occur when a metal powder is first compacted into a test specimen and then sintered.1.2 The dimensional change is determined by a quantitative laboratory procedure in which the arithmetic difference between the dimensions of a die cavity and the dimensions of a sintered test specimen produced from that die is calculated and expressed as a percent growth or shrinkage.1.3 With the exception of the values for density and the mass used to determine density, for which the use of the gram per cubic centimetre (g/cm3) and gram (g) units is the long-standing industry practice, the values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1 Scope and object This part of IEC 61000 is concerned with the emission of voltage changes, voltage fluctuations and flicker produced by equipment and impressed on the public low-voltage supply system. It specifies the limits of voltage changes produc

定价: 683元 / 折扣价: 581

在线阅读 收 藏

CSA Preface This is the first edition of CAN/CSA-C61000-3-3, Electromagnetic compatibility (EMC) - Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current

定价: 1092元 / 折扣价: 929

在线阅读 收 藏

5.1 Acceptance Testing—This method of testing fabrics resistance to pilling is not recommended for acceptance testing. If it is used for acceptance testing, it should be used with caution because interlaboratory data are not available. In some cases the purchaser or supplier may have to test a commercial shipment of one or more specific materials by the best available method even though the method has not been recommended for acceptance testing. Although this test method is not recommended for acceptance testing, it is useful because it is used widely outside the United States.5.2 If there is a disagreement arising from differences in values reported by the purchaser and the supplier when using this test method, the statistical bias, if any, between the laboratory of the purchaser and the laboratory of the supplier should be determined with comparison being based on testing specimens randomly drawn from one sample of material of the type being evaluated. Competent statistical assistance is recommended for the investigation of bias. A minimum of two parties should take a group of test specimens, which are as homogeneous as possible and which are from a lot of material of the type in question. The test specimens then should be assigned randomly in equal numbers to each laboratory for testing. The average test results from the two laboratories should be compared using an acceptable statistical protocol and probability level chosen by the two parties before the testing is started. Appropriate statistical disciplines for comparing data must be used when the purchaser and supplier cannot agree. If a bias is found, either its cause must be found and corrected, or the purchaser and the supplier must agree to interpret future results with consideration for the known bias.5.3 The pilling of textile fabrics is a very complex property because it is affected by many factors that include type of fiber or blends, fiber dimensions, yarn and fabric construction, and fabric finishing treatments. The pilling resistance of a specific fabric in actual wear varies more with general conditions of use and individual wearers than in replicate fabric specimens subjected to controlled laboratory tests. This experience should be borne in mind when adopting levels of acceptability for a series of standards.5.4 Finishes and fabric surface changes may exert a large effect on pilling. Fabrics may be tested as received or after refurbishing, or both (laundering or drycleaning, or both). Interested parties shall agree on the state of fabric to be tested. The state of tested fabric shall be reported..5.5 Pills vary appreciably in size and appearance and depend on the presence of lint and degree of color contrast. These factors are not evaluated when pilling is rated solely on the number of pills. The development of pills may be accompanied by other surface phenomena, such as loss of cover, color change, or the development of fuzz. Since the overall acceptability of a specific fabric is dependent on both the characteristics of the pills and the other factors affecting the surface appearance, it is suggested that fabrics tested in the laboratory be evaluated subjectively with regard to their acceptability and not rated solely on the number of pills developed. A series of standards, based on graduated degrees of surface change of the fabric type being tested, may be set up to provide a basis for subjective ratings. The visual standards are most advantageous when the laboratory test specimens correlate closely in appearance with worn fabrics and show a similar ratio of pills to fuzz. Counting the pills and weighing their number with respect to their size and contrast, as a combined measure of pilling resistance, is not recommended because of the excessive time required for counting, sizing, and calculation.5.6 The degree of fabric pilling is evaluated by comparing the tested specimens with visual standards, which may be actual fabrics or photographs of fabrics, showing a range of pilling resistance. The observed resistance to pilling is reported on an arbitrary scale ranging from 5 to 1 (no pilling to very severe pilling).5.7 This test method is applicable to a wide variety of woven and knitted fabrics that vary in pilling propensity as a result of variations in fiber, yarn and fabric structure, and finish. The applicability of this test method to nonwoven fabrics has not been determined.1.1 This test method covers the determination of the resistance to the formation of pills and other related surface changes on textile fabrics using the Martindale tester.NOTE 1: For other methods, if testing the pilling resistance of textiles, refer to Test Methods D3511/D3511M, D3512/D3512M, and D3514.1.2 This test method is generally applicable to knit, woven, and nonwoven fabrics; however, material thickness may limit suitability for testing due to specimen holder capacity.1.3 The fabric may be laundered or dry cleaned before testing as agreed upon among interested parties.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The information provided by this test method is useful for manufacturing quality control, technical service, and research purposes; and is required by various material specifications.5.2 This method is suitable for all elastomer or rubber materials.1.1 This standard gives the testing procedure to determine the change in dimensions of specimens of rubber or elastomeric materials, or both, resulting from exposure to gaseous hydrocarbon environments. The size of the specimens is such to facilitate preparation from as molded component configurations such as gaskets and seals. Where agreed to by both parties molded specimens may be used. Dimensional measurements are made prior to and after conditioning in a formulated test gas.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The fire performance of a material or product is affected by a combination of its fire-test-response characteristics. Two of the most commonly determined fire-test-response characteristics of cushioning materials are the surface flammability, in accordance with Test Method D3675, and the specific optical density of smoke, in accordance with Test Method E662.5.2 Cushioning materials used in upholstery applications are potentially exposed to leaching of the active ingredients due to (1) water solubility of the treating agents or (2) exposure to high humidity.5.3 In view of the importance that the fire performance of the cushioning materials used in upholstery applications remain constant throughout their intended service life, this test method provides a means to test for the potential change in two fire-test-response characteristics due to leaching.1.1 This fire-test-response test method covers a procedure for leaching cushioning materials with water and determining changes in two specific fire-test-response characteristics: (1) the surface flammability, in accordance with Test Method D3675, and (2) the specific optical density of smoke generated, in accordance with Test Method E662.1.2 In view of the wide variation in potential service conditions, it is likely that results of this leaching test will not give a direct correlation with service performance for all applications. However, the test method yields comparative data on which to base judgments as to expected service of cushioning materials and is useful in research and development work.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 7.1.6 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 By exposure to sufficient foot traffic, this practice can be applied to any pile yarn floor covering which undergoes changes in surface appearance.5.1.1 This practice does not simulate surface appearance changes due to soiling, pivoting, or rolling traffic, or traffic on stairs.1.1 This practice covers the trafficking of pile yarn floor coverings in a laboratory in order to effect a change in surface appearance as a result of exposure to foot traffic under controlled conditions. A separate test method, D7330, covers the assessment of surface appearance change using the Carpet and Rug Institute Reference Scales.21.2 This practice is applicable to most changes in surface appearance observed in all types of carpet that are intended for residential or commercial use. It eliminates change in appearance associated with soiling by focusing on appearance change due to matting, flattening, or change in pile fiber configuration. Although “pile reversal” or “watermarking” is occasionally visible, this practice is not a reliable method for producing this phenomenon.1.3 This practice may be used by mutual agreement between the purchaser and supplier to set purchasing specifications.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.Specific precautionary statements are given in Section 7.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method is intended only as a convenient test method for measurement of linear dimensional changes in plastics subjected to defined conditions of test as outlined in Sections 7 and 8.1.1 This test method is designed to provide a means for measuring the dimensional changes of plastic specimens such as shrinkage or expansion, developed under specific heat and water conditionings.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This standard and ISO 2796 address the same subject matter but differ in technical content.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Ionizing environments will affect the performance of optical fibers/cables being used to transmit spectroscopic information from a remote location. Determination of the type and magnitude of the spectral variations or interferences produced by the ionizing radiation in the fiber, or both, is necessary for evaluating the performance of an optical fiber sensor system.4.2 The results of the test can be utilized as a selection criteria for optical fibers used in optical fiber Raman spectroscopic sensor systems.NOTE 1: The attenuation of optical fibers generally increases when they are exposed to ionizing radiation. This is due primarily to the trapping of radiolytic electrons and holes at defect sites in the optical materials, that is, the formation of color centers. The depopulation of these color centers by thermal or optical (photobleaching) processes, or both, causes recovery, usually resulting in a decrease in radiationinduced attenuation. Recovery of the attenuation after irradiation depends on many variables, including the temperature of the test sample, the composition of the sample, the spectrum and type of radiation employed, the total dose applied to the test sample, the light level used to measure the attenuation, and the operating spectrum. Under some continuous conditions, recovery is never complete.1.1 This guide covers the method for measuring the real time, in situ radiation-induced alterations to the Raman spectral signal transmitted by a multimode, step index, silica optical fiber. This guide specifically addresses steady-state ionizing radiation (that is, alpha, beta, gamma, protons, etc.) with appropriate changes in dosimetry, and shielding considerations, depending upon the irradiation source.1.2 The test procedure given in this guide is not intended to test the other optical and non-optical components of an optical fiber-based Raman sensor system, but may be modified to test other components in a continuous irradiation environment.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation AMENDMENT 2: Alignment with changes made to ITU-T Rec. X.660|ISO/IEC 9834-1 for identifiers in object identifier value notation

定价: 182元 / 折扣价: 155

在线阅读 收 藏
19 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页