微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 280元 / 折扣价: 238

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

定价: 975元 / 折扣价: 829

在线阅读 收 藏
CAN3-A82.8-M78 (R2003) Hollow Clay Brick 现行 发布日期 :  1970-01-01 实施日期 : 

1. Scope 1.1 This Standard covers hollow building and facing brick made from clay, shale, fireclay, or mixtures thereof and burned for use in brick masonry. 1.2 This Standard excludes ceramic or other glazed brick. Brick to be treated with water-r

定价: 364元 / 折扣价: 310

在线阅读 收 藏

5.1 The pinhole test provides one method of identifying the dispersive characteristics of clay soils that are to be or have been used in earth construction. The piping failures of a number of homogeneous earth dams, erosion along channel or canal banks, and rainfall erosion of earthen structures have been attributed to the colloidal erosion along cracks or other flow channels formed in masses of dispersive clay (2).5.2 This test method models the action of water flowing along a crack in an earth embankment. Other indirect tests, such as the double hydrometer test (Test Method D4221), the crumb test (3, 4), that relates the turbidity of a cloud of suspended clay colloids as an indicator of the clay dispersivity, and chemical tests that relate the percentage of sodium to total soluble salt content of the soil are also used as indicator tests of clay dispersibility (2). The comparison of results from the pinhole test and other indirect tests on hundreds of samples indicates that the results of the pinhole test have the best correlation with the erosional performance of clay soils in nature.5.3 Method A and Method C of the pinhole test require the evaluation of cloudiness of effluent, final size of the pinhole, and computation of flow rates through the pinhole in order to classify the dispersive characteristics of the soil. Method B requires only the evaluation of the cloudiness of effluent and final size of the pinhole to classify the dispersive characteristics of the soil. The computation of flow rates through the pinhole in Method A serves primarily as a guide to the proper equipment and specimen performance under sequential pressures applied during the test. All methods produce similar results and any method can be used to identify dispersive clays.5.4 The use of Method A or Method C results in the accumulation of data relative to sequential flow rates through the pinhole and consequent enlargement or erosion of the hole. The pinhole erosion test was developed for the purpose of identifying dispersive soils and is not intended to be a geometrically scaled model of a prototype structure. Since the theory of similitude was not used in the design of the pinhole test, quantitative data are not obtained. The quantity of flow through the pinhole, amount of soil erosion, or the rate of soil erosion should not be extrapolated to actual field conditions (3). However, such data may be useful in performing qualitative evaluations of the consequences of such erosion in terms of dam failure, loss of life and property. They also may be used in considering the cost effectiveness of defensive design measures necessary to minimize the effects of failure due to dispersive clays. For example, the amount of colloidal erosion that will occur in a soil classed as ND2 (very slightly dispersive) will be very small for a relatively long period of time. Such erosion may not be significant in evaluating the cost-benefit relationships in projects where public safety is not involved or where normal maintenance procedures will handle the problem. In such cases, classifying the soil as ND (nondispersive) using Method B of the pinhole test should be adequate.5.5 Pinhole tests that result in classifying soil as slightly dispersive (ND3 by Method A or Method C or SD by Method B) indicate high uncertainty about the existence of significant problems to be considered in the design or stability of a structure. In such cases, it is advisable to resample and test a number of other soils from the same area to generate an adequate statistical sample for problem evaluation. The original slightly dispersive sample may come from an area on the edge of a more highly dispersive soil.5.6 In a few physiographic areas or geoclimatic conditions, or both, neither the pinhole test nor the other indicator tests provide consistent identification of dispersive clays (5, 6, 7). In such cases, the results of the tests (8, 9) should be evaluated in terms of cost effectiveness and design judgment (7).5.7 For some projects, it may be desirable to perform the pinhole test using eroding fluids other than distilled water (8, 10). In such cases, Method A, Method B, or Method C may be used to identify the dispersive characteristics of the soil and compare the results with those obtained using distilled water.NOTE 1: Notwithstanding the statement on precision and bias contained in these test methods: The precision of these test methods is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies which meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of these test methods are cautioned that compliance with Practice D3740 does not in itself assure reliable testing. Reliable testing depends on several factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method presents a direct, measurement of the dispersibility and consequent colloidal erodibility of clay soils by causing water to flow through a small hole punched in a specimen. The results of the tests are qualitative and provide general guidance regarding dispersibility and erodibility. This test method is complemented by Test Method D4221.1.2 This test method and the criteria for evaluating test data are based upon results of several hundred tests on samples collected from embankments, channels, and other areas where clay soils have eroded or resisted erosion in nature (1).21.3 Three alternative procedures for classifying the dispersibility of clay soils are provided as follows:1.3.1 Method A and Method C, adapted from Ref (1), classify soils into six categories of dispersiveness as: dispersibility (D1, D2), slight to moderately dispersive (ND4, ND3), and nondispersive (ND2, ND1).1.3.2 Method B classifies soils into three categories of dispersiveness as: dispersibility (D), slightly dispersive (SD), and nondispersive (ND).1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.5 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Surface cleaning is necessary to prepare clay brick masonry surfaces for application of coatings intended for water repellent protection. Surface cleaning helps to ensure proper adhesion or even penetration of the coating and to prevent unintended sealing-in of stains.4.2 This practice addresses surface cleaning only. Other preparation or remedial repairs, such as repointing the masonry or replacing of units, may be necessary and must be completed prior to application of the water repellent treatment.1.1 This practice covers non-abrasive surface cleaning of clay brick masonry to remove surface contaminants such as dirt, grease, loose material, soot, fly ash, hydrocarbon residues, algae, etc. in preparation for the application of water repellent coatings without damaging or altering the surface appearance of the clay brick masonry.1.2 Procedures included in this practice are water cleaning, detergent water cleaning, pressurized water cleaning, steam cleaning, and acid cleaning. It is not intended for the cleaning of newly constructed brick masonry. Use of procedures described in this practice may not be appropriate where the surface is of a historical nature.1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard information see Section 5, 6.4.1.1, and 6.4.1.2.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This standard test method is intended as an index test to determine the relative oil sorption capacity of an organophilic clay. Organophilic clay is used for remediation of contaminated sediment, soil, and groundwater. Results of this standard test method can be used for a) evaluating whether product meets a manufacturing quality control specification, and b) evaluating acceptance of a product per a construction quality assurance material specification. The organophilic clay specified may be either granular or powder. There are two test methods; a gravity test method for granular specimens and a centrifuge test method for powdered specimens.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This standard covers two test methods (Method A for granular material, Method B for powdered material) that can be used as an index test for the evaluation of the oil sorption capacity of a representative sample of organophilic clay. The test method is not intended to be a performance test and the oil specified in the test methods may yield different results than other non-aqueous phase liquids (for example, coal tar, creosote, crude oil) encountered in the field. Method A should only be used on granular organophilic clay; otherwise finer particles may pass through the test sieve.1.2 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.2.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of the reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.3 Units—The values stated in SI units are to be regarded as the primary units for the standard. For information only, non-SI units of measurement are also included in this standard to describe some equipment (bucket, sieve).1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method applies to one-dimensional, laminar flow of aqueous solutions, such as chemical solutions, landfill leachate, and contaminated water (from here on referred to as “test liquid”), through saturated/hydrated GCL specimen that is consolidated and permeated under a prescribed or requested set of conditions.4.2 This test method assumes that Darcy’s law is valid and that the hydraulic conductivity is essentially unaffected by hydraulic gradient. The validity of Darcy’s law may be evaluated by measuring the hydraulic conductivity of the specimen at three different hydraulic gradients; if all measured values are similar (within about 25 %), then Darcy's law may be taken as valid. However, when the hydraulic gradient acting on a test specimen is changed, the state of stress will also change and, if the specimen is compressible, the volume of the specimen will change. Thus, some change in hydraulic conductivity may occur when the hydraulic gradient is altered, even in cases where Darcy's law is valid.4.3 This test method provides tools for determining flux and hydraulic conductivity values for a given GCL under the following two different scenarios, which should be specified by the requester:4.3.1 Scenario 1 – Hydrated/Saturated with Water Prior to Contact with Test Liquid—This scenario simulates the field conditions where the GCL is well hydrated with water prior to contact with actual test liquid. It should be noted that initial degree of saturation/hydration greatly affects the hydraulic properties of a GCL product. The test has two phases: (Phase 1) hydrate, saturate, consolidate, and permeate with water as Test Liquid 1, and (Phase 2) switch to permeation with test liquid as Test Liquid 2.4.3.2 Scenario 2 – Hydrated/Saturated with Test Liquid (Worst Case)—This scenario simulates the field conditions where the GCL is in contact with test liquid prior to being fully hydrated with water. It should be noted that this scenario may result in higher flux and hydraulic conductivity values compared to Scenario 1, as chemicals present in test liquid may alter the hydration and hydraulic properties of a GCL product.4.4 The apparatus used in this test method is commonly used to determine the hydraulic conductivity of soil specimens. However, flux values measured in this test are typically much lower than those commonly measured for most natural soils. It is essential that the leakage rate of the apparatus in this test be less than 10 % of the flux.1.1 This test method covers laboratory measurement of both flux and hydraulic conductivity (also referred to as coefficient of permeability) of geosynthetic clay liner (GCL) specimens permeated with chemical solutions and leachates utilizing a flexible wall permeameter. For test measurement of index hydraulic properties of geosynthetic clay liners, refer to Test Method D5887/D5887M. For hydraulic conductivity compatibility of soils with aqueous chemical solutions and leachates, refer to Test Method D7100.1.2 This test method may be utilized with GCL specimens that have a hydraulic conductivity less than or equal to 1 × 10–5 m/s (1 × 10–3 cm/s).1.3 This test method is applicable to GCL products having geotextile backing(s). It is not applicable to GCL products with geomembrane backing(s), geofilm backing(s), or polymer coating backing(s).1.4 This test method allows the requester to evaluate the hydraulic properties of a GCL with site-specific or laboratory-prepared solution under different test conditions; thus, the test method also may be used to check performance or conformance, or both.1.5 The values stated in SI units are to be regarded as the standard, unless other units are specifically given. By tradition in U.S. practice, hydraulic conductivity is reported in centimeters per second, although the common SI units for hydraulic conductivity are meters per second.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method may be used for the acceptance testing of commercial shipments of GCLs, but caution is advised since information about between-laboratory precision is incomplete. Comparative tests as directed in 5.1.1 may be advisable.5.1.1 In cases of a dispute arising from differences in reported test results when using this test method for acceptance of shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias. The two parties should take a group of test samples that are as homogeneous as possible and which are from the lot of material in question.5.2 Some modification of clamping techniques may be necessary for a given GCL, depending upon its structure. Specimen clamping may be modified as required at the discretion of the individual laboratory, provided a representative tensile strength is obtained. In any event, the procedure described in Section 10 of this test method for obtaining tensile strength must be maintained.5.3 This test method is applicable for testing GCLs as received. It is used with a constant rate of extension type tension apparatus.1.1 This test method establishes the procedures for the measurement of tensile strength of a geosynthetic clay liner (GCL). This test method is strictly an index test method to be used to verify the tensile strength of GCLs. Results from this test method should not be considered as an indication of actual or long-term performance of the geosynthetic(s) in field applications.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM C896-22 Standard Terminology Relating to Clay Products Active 发布日期 :  1970-01-01 实施日期 : 

Terminology Relating to Clay Products

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
74 条记录,每页 15 条,当前第 1 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页