微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
AS 2141-1978 Composition and marking requirements of silver articles 现行 发布日期 :  1978-04-01 实施日期 : 

定价: 260元 / 折扣价: 221

在线阅读 收 藏

5.1 Residue in LPG is a contaminant that can lead to operational problems in some end use applications. Engines, micro-turbines, fuel cells and other equipment may be sensitive to residue levels as low as 10 mg/kg.5.2 Contamination of LPG can occur during production, transport, delivery, storage and use. A qualitative indication of the contaminants can help track down the source of the contamination from manufacture, through the distribution system, and to the end user.5.3 This test method is designed to provide a lower detection limit, wider dynamic range, and better accuracy than gravimetric methods like Test Method D2158.5.4 This test method can be performed with little or no discharge of LPG vapors, compared to Test Method D2158 which requires evaporation of 100 mL of sample per test.5.5 Sampling for residue in LPG using sorbent tubes can be performed in the field, and the sorbent tubes sent to a laboratory for analysis. This saves significant costs in shipping (weight of tube is approximately 10 grams), and is much safer and easier than transporting LPG cylinders.5.6 This test method determines total residues from C6 to C40, compared to a thermal gravimetric residue method such as Test Method D2158 which heat the residue to 38°C, resulting in a lower recovery due to loss of lighter residue components.5.7 If there is a need to decrease the detection limit of residue or individual compounds of interest below 10 µg/g, the procedures in this test method can be modified to achieve 50 times enhanced detection limit, or 0.2 µg/g.1.1 This test method covers the determination of residue in LPG by automated thermal desorption/gas chromatography (ATD/GC) using flame ionization detection (FID).1.2 The quantitation of residue covers a component boiling point range from 69°C to 522°C, equivalent to the boiling points of C6 through C40 n-paraffins.1.2.1 The boiling range covers possible LPG contaminants such as gasoline, diesel fuel, phthalates and compressor oil. Qualitative information on the nature of the residue can be obtained from this test method.1.2.2 Materials insoluble in LPG and components which do not elute from the gas chromatograph or which have no response in a flame ionization detector are not determined.1.2.3 The reporting limit (or limit of quantitation) for total residue is 6.7 µg/g.1.2.4 The dynamic range of residue quantitation is 6.7 to 3300 µg/g.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

Determination of percent uranium content and 235U abundance in oxides and other materials containing high concentrations of uranium is required for special nuclear materials accountability, regulatory requirements, and process control.1.1 This test method covers a method for the determination of the uranium concentration in uranium oxides by isotope dilution mass spectrometry (IDMS). The isotopic composition of the oxide is measured simultaneously.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification establishes requirements for an alloy having a composition of copper, tin, lead, and zinc which is used for component castings of valves, flanges, and fittings. The specimen shall have the chemical composition of major elements: copper, tin, lead zinc, nickel including cobalt. It must also be comprised of the following residual elements: iron, antimony, sulfur, phosphorus, aluminum, and silicon. Mechanical properties shall be determined from separately cast test bars. Castings shall not be repaired, plugged, welded or burned-in. Valves, flanges, and fittings shall be marked accordingly in such position as not to injure the usefulness of the casting.1.1 This specification2 establishes requirements for an alloy having a composition of copper, tin, lead, and zinc, used for component castings of valves, flanges, and fittings. The common trade name of this alloy is 85-5-5-5; the correct identification is Copper Alloy UNS No. C83600.31.2 The castings covered are used in products that may be manufactured in advance and supplied from stock from the manufacturer or other dealer.1.3 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units, which are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The practice for taking a sample of molten metal during production and producing a chill cast disk, used in conjunction with the following appropriate quantitative spark atomic emission spectrochemical methods, Test Methods E607 and E1251, is suitable for use in manufacturing control or certifying, or both, that the entire lot of alloy sampled meets established composition limits.5.2 The practice for melting a piece of a product to produce a chill cast disk analyzed in conjunction with the following appropriate quantitative spark atomic emission spectrochemical methods, Test Methods E607 and E1251, is suitable, if a representative sample is taken, for determining if the piece sampled meets Aluminum Association composition limits.5.3 The practice for direct analysis of product is suitable for determining an approximate composition of the piece analyzed.1.1 These practices describe procedures for producing a chill cast disk sample from molten aluminum during the production process, and from molten metal produced by melting pieces cut from products.1.2 These practices describe a procedure for obtaining qualitative results by direct analysis of product using spark atomic emission spectrometry.1.3 These practices describe procedures for preparation of samples and products prior to analysis.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 6.1 and 7.2.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is intended primarily for the sampling of copper and copper alloys for compliance with compositional specification requirements.4.2 The selection of correct test pieces and the preparation of a representative sample from such test pieces are necessary prerequisites to every analysis. The analytical results will be of little value unless the sample represents the average composition of the material from which it was prepared.1.1 This practice describes the sampling of copper (except electrolytic cathode) and copper alloys in either cast or wrought form for the determination of composition.1.2 Cast products may be in the form of cake, billet, wire bar, ingot, ingot bar, or casting.1.3 Wrought products may be in the form of flat, pipe, tube, rod, bar, shape, or forging.1.4 This practice is not intended to supersede or replace existing specification requirements for the sampling of a particular material.1.5 The values stated in SI units are to be regarded as standard. The values in parentheses are given for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. A specific precautionary statement appears in Appendix X4.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The determination of uranium isotopic composition by gamma-ray spectrometry is a nondestructive technique and when used with other nondestructive techniques that quantify a single isotope, such as Test Methods C1133 (Segmented Gamma Scanning), C1221 (Solution Assay), C1455 (Holdup),and C1718 (Tomographic Gamma Scanning), can provide a wholly nondestructive assay of uranium mass necessary for material accountancy and safeguards needs. This method can be used with calorimetry (Test Method C1458) for kilogram quantities of high-enriched uranium and is also used to convert an Active-Well Coincidence Counter (4) measurement of 235U mass to total uranium mass.4.2 Because gamma-ray spectrometry systems are typically automated, the routine use of the test method is fast, reliable, and is not labor intensive. The test method is nondestructive, requires no sample preparation, and does not create waste disposal problems.4.3 The test method does not require that the system be calibrated to a specific geometry.4.4 The test method assumes that all uranium in the measured item has the same isotopic distribution. This is often termed isotopic homogeneity.4.5 The application of the test method does not depend upon the physical or chemical form of the material being analyzed.4.6 The 236U abundance is not measured by this test method and must be estimated from isotopic correlation techniques, stream averages, historical information, or other measurement techniques.4.7 The isotopic composition of a given item of uranium is an attribute of that item and, once determined, can be used in subsequent inventory measurements to verify the identity of an item within the measurement uncertainties.4.8 The method can also measure the ratio of other gamma-emitting isotopes in the measured item to uranium assuming they have the same spatial distribution as the uranium in the item. Some of these “other” gamma-emitting isotopes include daughter isotopes of uranium, cesium, and other fission products.4.9 The method can be applied to gamma and x rays in two overlapping energy regions, depending upon the nature of the measured item, its containment, and the characteristics of the detector used for data acquisition.4.9.1 60 keV to 250 keV—This energy range requires good energy resolution provided by planar or semi-planar HPGe detectors. The analysis methods must be capable of deconvoluting the x-ray peak line shapes from the gamma-ray peak shapes.4.9.2 120 keV to 1010 keV—This energy range generally requires higher efficiency detectors typified by larger coaxial detectors (> 25 % relative efficiency) or large semi-planar detectors (> 30 mm thick).4.10 Fig. 1 shows the decays that produce most of the prominent gamma and x rays that are measured in this analysis.(A) Energies and Branching Intensities from Ref (1).(B) Uncertainties in parentheses are absolute 1σ values.(C) Relative values from unweighted mean of plutonium decay data from Ref (1).1.1 This test method applies to the nondestructive determination of the isotopic abundances of uranium, typically 234U, 235U, 236U, and 238U, in isotopically homogeneous uranium-bearing materials using gamma spectrometry. The material is commonly inside a container and is measured without specimen preparation.1.2 This test method is applicable to items containing sub-gram quantities of uranium to the maximum uranium mass allowed by criticality considerations.1.3 Measurable gamma ray emissions from uranium cover the energy range from below 80 keV to above 1000 keV. K-X-ray emissions from the isotopes of uranium and their daughters are found in the energy region around 100 keV. This test method has been applied to all portions of this energy range.1.4 The isotopic abundance of 236U is usually not directly determined because its low-energy gamma rays are too weak (1)2 to be detected under normal measurement conditions. Isotopic correlation techniques have been used to estimate its relative abundance (2).1.5 This test method has been demonstrated in routine use for isotopic amount fraction (atom %) of 235U from 0.2 % to 97 %.1.6 This test method requires decay equilibrium (160 days for 99 %) between 238U and its 24.1 d half-life 234Th daughter. Corrections can be made if the date of chemical separation of the 234Th daughter is known.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The total evaporation method is used to measure the isotopic composition of uranium, plutonium, and americium materials, and may be used to measure the elemental concentrations of these elements when employing the IDMS technique.5.2 Uranium and plutonium compounds are used as nuclear reactor fuels. In order to be suitable for use as a nuclear fuel the starting material must meet certain criteria, such as found in Specifications C757, C833, C753, C776, C787, C967, C996, or as specified by the purchaser. The uranium concentration, plutonium concentration, or both, and isotope abundances are measured by TIMS following this method.5.3 Americium-241 is the decay product of 241Pu isotope. The abundance of the 241Am isotope together with the abundance of the 241Pu parent isotope can be used to estimate radio-chronometric age of the Pu material for nuclear forensic applications Ref (6). The americium concentration and isotope abundances are measured by TIMS following this method.5.4 The total evaporation method allows for a wide range of sample loading with no significant change in precision or accuracy. The method is also suitable for trace-level loadings with some loss of precision and accuracy. The total evaporation method and modern instrumentation allow for the measurement of minor isotopes using ion counting detectors, while the major isotope(s) is(are) simultaneously measured using Faraday cup detectors.5.5 The new generation of miniaturized ion counters allow extremely small samples, in the picogram range, to be measured via the total evaporation method. The method may be employed for measuring environmental or safeguards inspection samples containing nanogram quantities of uranium or plutonium. Very small loadings require special sample handling and careful evaluation of measurement uncertainties.5.6 Typical uranium analyses are conducted using sample loadings between 50 nanograms and 800 nanograms. For uranium isotope ratios the total evaporation method had been used in several recent NBL isotopic certified reference material (CRM) characterizations (for example (2, 3)). A detailed comparison of the total evaporation data on NBL uranium CRMs analyzed by the MAT 261 and TRITONTM instruments is provided in Ref (5). For total evaporation, plutonium analyses are generally conducted using sample loads in the range of 20 to 200 nanograms of plutonium.1.1 This method describes the determination of the isotopic composition, or the concentration, or both, of uranium, plutonium, and americium as nitrate solutions by the total evaporation method using a thermal ionization mass spectrometer (TIMS) instrument. Purified uranium, plutonium, or americium nitrate solutions are deposited onto a metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion currents are continually measured until the whole deposited solution sample is exhausted. The measured ion currents are integrated over the course of the measurement and normalized to a reference isotope ion current to yield isotope ratios.1.2 In principle, the total evaporation method should yield isotope ratios that do not require mass bias correction. In practice, samples may require this bias correction. Compared to the conventional TIMS method described in Test Method C1625, the total evaporation method is approximately two times faster, improves precision of the isotope ratio measurements by a factor of two to four, and utilizes smaller sample sizes. Compared to the C1625 method, the total evaporation method provides “major” isotope ratios 235U/238U, 240Pu/239Pu, and 241Am/243Am with improved accuracy.1.3 The total evaporation method is prone to biases in the “minor” isotope ratios (233U/238U, 234U/238U, and 236U/238U ratios for uranium materials and 238Pu/239Pu, 241Pu/239Pu, 242Pu/239Pu, and 244Pu/239Pu ratios for plutonium materials) due to peak tailing from adjacent major isotopes. The magnitude of the absolute bias is dependent on measurement and instrumental characteristics. The relative bias, however, depends on the relative isotopic abundances of the sample. The use of an electron multiplier equipped with an energy filter may eliminate or diminish peak tailing effects. Measurement of the abundance sensitivity of the instrument may be used to ensure that such biases are negligible, or may be used to bias correct the minor isotope ratios.1.4 The values stated in SI units are to be regarded as standard. When non-SI units are provided in parentheses, they are for information only.1.5 This standard may involve the use of hazardous materials and equipment. This standard does not purport to address all the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

2.1 Vinyl composition tile or flooring consists of vinyl resins (suitably plasticized and stabilized) fortified with composition fibers, mineral fillers, and prime pigments. In some cases, all or part of the wearing surfaces may consist of unfilled vinyl resin that is clear or translucent. Metallic accents (chips, pigment, etc.) are frequently used to form the overall design. In general, the overall binder content is lower than that of homogeneous vinyl tile. For the purpose of this practice, vinyl composition also includes vinyl asbestos tile.1.1 This practice covers the application of floor polishes to maintain vinyl composition tile or flooring. Floor polishes are applied to vinyl composition tile floors for protection and beautification of the floor surface. Cleaning, polish application, removal, and maintenance procedures are important functions in this process.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM F1066-23 Standard Specification for Vinyl Composition Floor Tile Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers vinyl composition floor tile with either smooth or embossed surfaces. Vinyl composition tile shall conform to the materials, color, pattern, wearing surface, size, thickness, and squareness indicated in this specification. The material shall be tested for indentation and impact. Performance requirements for vinyl composition tiles include deflection limit, dimensional stability, chemical resistance, and heat resistance. Basic chemicals for chemical resistance test include vinegar, alcohol, mineral oil, sodium hydroxide solution, household ammonia solution, household bleach, olive oil, kerosene, unleaded gasoline, and phenol.1.1 This specification covers vinyl composition tile (VCT) with either smooth or embossed surfaces for flooring application.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The composition and sequential structure of alginate determines the functionality of alginate in an application. For instance, the gelling properties of an alginate are highly dependent upon the monomer composition and sequential structure of the polymer. Gel strength will depend upon the guluronic acid content (FG) and also the average number of consecutive guluronate moieties in G-block structures (NG>1).4.2 Chemical composition and sequential structure of alginate can be determined by 1H- and 13C-nuclear magnetic resonance spectroscopy (NMR). A general description of NMR can be found in <761> of the USP 35-NF30. The NMR methodology and assignments are based on data published by Grasdalen et al. (1979, 1981, 1983).4, 5, 6 The NMR technique has made it possible to determine the monad frequencies FM (fraction of mannuronate units) and FG (fraction of guluronate units), the four nearest neighboring (diad) frequencies FGG, FMG, FGM, FMM, and the eight next nearest neighboring (triad) frequencies FGGG, FGGM, FMGG, FMGM, FMMM, FMMG, FGMM, FGMG. Knowledge of these frequencies enables number averages of block lengths to be calculated. NG is the number average length of G-blocks, and NG>1 is the number average length of G-blocks from which singlets (-MGM-) have been excluded. Similarly, NM is the number average length of M-blocks, and NM>1 is the number average length of M-blocks from which singlets (-GMG-) have been excluded. 13C NMR must be used to determine the M-centered triads and NM>1. This test method describes only the 1H NMR analysis of alginate. Alginate can be well characterized by determining FG and NG>1.4.3 In order to obtain well-resolved NMR spectra, it is necessary to reduce the viscosity and increase the mobility of the molecules by depolymerization of alginate to a degree of polymerization of about 20 to 50. Acid hydrolysis is used to depolymerize the alginate samples. Freeze-drying, followed by dissolution in 99 % D2O, and another freeze-drying before dissolution in 99.9 % D2O yields samples with low 1H2O content. TTHA is used as a chelator to prevent traces of divalent cations to interact with alginate. While TTHA is a more effective chelator, other agents such as EDTA and citrate may be used. Such interactions may lead to line broadening and selective loss of signal intensity.4.4 Samples are analyzed at a temperature of 80 ± 1°C. Elevated sample temperature contributes to reducing sample viscosity and repositions the proton signal of residual water to an area outside that of interest.1.1 This test method covers the determination of the composition and monomer sequence of alginate intended for use in biomedical and pharmaceutical applications as well as in Tissue Engineered Medical Products (TEMPs) by high-resolution proton NMR (1H NMR). A guide for the characterization of alginate has been published as Guide F2064.1.2 Alginate, a linear polymer composed of β-D-mannuronate (M) and its C-5 epimer α-L-guluronate (G) linked by β-(1—>4) glycosidic bonds, is characterized by calculating parameters such as mannuronate/guluronate (M/G) ratio, guluronic acid content (G-content), and average length of blocks of consecutive G monomers (that is, NG>1 ). Knowledge of these parameters is important for an understanding of the functionality of alginate in TEMP formulations and applications. This test method will assist end users in choosing the correct alginate for their particular application. Alginate may have utility as a scaffold or matrix material for TEMPs, in cell and tissue encapsulation applications, and in drug delivery formulations.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Waste composition information has widespread applications and can be used for activities such as solid waste planning, designing waste management facilities, and establishing a reference waste composition for use as a baseline standard in both facility contracts and acceptance test plans.4.2 The method can be used to define and report the composition of MSW through the selection and manual sorting of waste samples. Where applicable, care should be taken to consider the source and seasonal variation of waste.4.3 After performing a waste composition analysis, laboratory analyses may be performed on representative samples of waste components, or mixtures of waste components, for purposes related to the planning, management, design, testing, and operation of resource recovery facilities.1.1 This test method describes procedures for measuring the composition of unprocessed municipal solid waste (MSW) by employing manual sorting. This test method applies to determination of the mean composition of MSW based on the collection and manual sorting of a number of samples of waste over a selected time period covering a minimum of one week.1.2 This test method includes procedures for the collection of a representative sorting sample of unprocessed waste, manual sorting of the waste into individual waste components, data reduction, and reporting of the results.1.3 This test method may be applied at landfill sites, waste processing and conversion facilities, and transfer stations.1.4 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This classification establishes categories of insulating coatings based on their chemical nature, relative insulating ability, and typical applications. These categories describe general physical and chemical characteristics of the coatings that are useful in making broad estimates of their insulating ability and suitability for various applications.1.1 This document classifies insulating coatings for electrical steels according to their composition, relative insulating ability, and functionality. The purpose of this classification is to assist users of insulating coatings by providing general information about the chemical nature and use of the coatings, as well as to provide important data concerning limits to their use, that is, relative insulating ability, punchability, temperature stability, weldability, and fabricability. Specific surface insulation resistivity values for each coating are not included in this classification. The user is referred to the flat-rolled electrical steel specifications noted in 1.2 should more detailed information concerning surface insulation resistivity values be required.1.2 This classification is to be used in conjunction with the various specifications for flat-rolled electrical steels under the jurisdiction of Committee A06, including Specifications A345, A677, A683, A726, A840, A876, and A1086. However, in those instances in which the coating descriptions and characteristics differ between this classification and any of the specifications, this classification shall supersede the specification.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to customary (cgs-emu and inch-pound) units which are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 A coating of terne metal on iron or steel articles is intended to provide drawability, solderability, or corrosion resistance, or combination thereof, which can require different amounts of coating. Specifications for terne-coated sheets frequently provide for these different classes (weights) of coating so that purchasers can select that most suitable for their needs. This test method provides a means of determining the weight of coating for comparison with the material specification requirements. 1.1 This test method covers the determination of the weight and composition of coating on terne sheet by the triple-spot method. The following three procedures are described: 1.1.1 Procedure A—Stripping with sulfuric acid. 1.1.2 Procedure D—Stripping with hydrochloric acid and antimony trichloride. 1.1.3 Procedure E—Stripping with hydrobromic acid-bromine solution. Note 1—Procedure B (Electrolytic Stripping) and Procedure C (Stripping with Silver Nitrate Solution), formerly in this test method, were discontinued because lack of usage. The designation for Procedure D and Procedure E are retained to avoid future confusion when reference is made only to the procedure designation. 1.2 If the percent of tin in the coating is required, stripping with hydrobromic acid-bromine is the preferred procedure. Steel with a predeposited electrolytic nickel coating requires a two-stage stripping method to determine total tin content. If both the tin and lead percentage are required, stripping with sulfuric acid is recommended, but caution is advised since the sulfuric acid procedure has been found to produce high tin results (see Section 11). 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Section 5, Note 2, and Section 17.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 If the desired mechanical properties are as described in 5.1.1 for material identified as Classes P-1 through P-7, or in 5.1.2 for material identified as Classes Q-1 through Q-7, the strength level desired can be based on hardness or the equivalent tensile or yield strength as shown in Tables 1-4. If the desired mechanical properties are as set forth in 5.1.3 for material identified as Classes R-1 through R-6, the strength level is based on yield strength as shown in Tables 5 and 6. 4.2 The user, after determining the mechanical property requirements of the critical section (that carrying the greatest stress) of the part, should select the composition or compositions from Tables 1-6 that fulfills these requirements and is most suitable for processing. 1.1 This practice covers the selection of steel bars according to section and to the mechanical properties desired in the part to be produced. This is not a specification for the procurement of steel. Applicable procurement specifications are listed in Section 6. 1.2 Several steel compositions intended for various sections and mechanical property requirements are presented in Tables 1-6. The criteria for placing a steel composition in one of the three general class designations, Classes P, Q, and R (described in Section 5) are as follows: 1.2.1 Classes P and Q  should be capable of developing the mechanical properties shown in Tables 1-4 by liquid quenching from a suitable austenitizing temperature, and tempering at 800 °F (427 °C) or higher. A hardness indicated by tests made at a location shown in Fig. 1, A, B, or C, is taken as evidence that a composition is capable of meeting other equivalent mechanical properties shown in the tables. Normal good shop practices are assumed, with control of austenitizing and tempering temperatures, and mild agitation of the part in the quenching bath. FIG. 1 Locations in Typical Cross Sections of Steel Bars at Which Desired Properties Are Obtained 1.2.2 Class R  should be capable of developing the mechanical properties shown in Tables 5 and 6 as hot rolled, by cold drawing, or by cold drawing with additional thermal treatment. The locations for obtaining tension tests are described in 7.2. 1.3 It is not implied that the compositions listed in the tables are the only ones satisfactory for a certain class and mechanical property requirement. Steels with lower alloy contents are often satisfactory through the use of special processing techniques. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
47 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页