微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 1515元 / 折扣价: 1288 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

5.1 The parameters obtained from Methods A and B are in terms of undrained total stress. However, there are some cases where either the rock type or the loading condition of the problem under consideration will require the effective stress or drained parameters be determined. 5.2 Method C, uniaxial compressive strength of rock is used in many design formulas and is sometimes used as an index property to select the appropriate excavation technique. Deformation and strength of rock are known to be functions of confining pressure. Method A, triaxial compression test, is commonly used to simulate the stress conditions under which most underground rock masses exist. The elastic constants (Methods B and D) are used to calculate the stress and deformation in rock structures. 5.3 The deformation and strength properties of rock cores measured in the laboratory usually do not accurately reflect large-scale in situ properties because the latter are strongly influenced by joints, faults, inhomogeneity, weakness planes, and other factors. Therefore, laboratory values for intact specimens shall be employed with proper judgment in engineering applications. Note 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means for evaluating some of those factors. 1.1 These four test methods cover the determination of the strength of intact rock core specimens in uniaxial and triaxial compression. Methods A and B determine the triaxial compressive strength at different pressures and Methods C and D determine the unconfined, uniaxial strength. 1.2 Methods A and B can be used to determine the angle of internal friction, angle of shearing resistance, and cohesion intercept. 1.3 Methods B and D specify the apparatus, instrumentation, and procedures for determining the stress-axial strain and the stress-lateral strain curves, as well as Young's modulus, E, and Poisson's ratio, υ. These methods do not make provisions for pore pressure measurements and specimens are undrained (platens are not vented). Thus, the strength values determined are in terms of total stress and are not corrected for pore pressures. These test methods do not include the procedures necessary to obtain a stress-strain curve beyond the ultimate strength. 1.4 Option A allows for testing at different temperatures and can be applied to any of the test methods, if requested. 1.5 This standard replaces and combines the following Standard Test Methods: D2664 Triaxial Compressive Strength of Undrained Rock Core Specimens Without Pore Pressure Measurements; D5407 Elastic Moduli of Undrained Rock Core Specimens in Triaxial Compression Without Pore Pressure Measurements; D2938 Unconfined Compressive Strength of Intact Rock Core Specimens; and D3148 Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression. The original four standards are now referred to as Methods in this standard. 1.5.1 Method A—Triaxial Compressive Strength of Undrained Rock Core Specimens Without Pore Pressure Measurements. 1.5.1.1 Method A requires strength determination only. Strain measurements and a stress-strain curve are not required. 1.5.2 Method B—Elastic Moduli of Undrained Rock Core Specimens in Triaxial Compression Without Pore Pressure Measurements. 1.5.3 Method C—Uniaxial Compressive Strength of Intact Rock Core Specimens. 1.5.3.1 Method C requires strength determination only. Strain measurements and a stress-strain curve are not required. 1.5.4 Method D—Elastic Moduli of Intact Rock Core Specimens in Uniaxial Compression. 1.5.5 Option A: Temperature Variation—Applies to any of the methods and allows for testing at temperatures above or below room temperature. 1.6 For an isotropic material in Test Methods B and D, the relation between the shear and bulk moduli and Young's modulus and Poisson's ratio are: where: G   =   shear modulus, K   =   bulk modulus, E   =   Young's modulus, and υ   =   Poisson's ratio. 1.6.1 The engineering applicability of these equations decreases with increasing anisotropy of the rock. It is desirable to conduct tests in the plane of foliation, cleavage or bedding and at right angles to it to determine the degree of anisotropy. It is noted that equations developed for isotropic materials may give only approximate calculated results if the difference in elastic moduli in two orthogonal directions is greater than 10 % for a given stress level. Note 1: Elastic moduli measured by sonic methods (Test Method D2845) may often be employed as a preliminary measure of anisotropy. 1.7 Test Methods B and D for determining the elastic constants do not apply to rocks that undergo significant inelastic strains during the test, such as potash and salt. The elastic moduli for such rocks should be determined from unload-reload cycles that are not covered by these test methods. 1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method. 1.9 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026. 1.9.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design. 1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is intended primarily for the testing of flat panel composites and sandwich core panels to an acceptance criteria most typically specified in a purchase order or other contractual document.5.2 Basis of Application—There are areas in this practice that require agreement between the cognizant engineering organization and the supplier, or specific direction from the cognizant engineering organization.1.1 This practice establishes two procedures for ultrasonic testing (UT) of flat panel composites and flat sandwich core panels (parallel surfaces). Typical as-fabricated lay-ups include uniaxial, cross ply and angle ply laminates; as well as honeycomb sandwich core materials. These procedures can be used throughout the life cycle of the materials; product and process design optimization, on line process control, after manufacture inspection, and in service inspection. Contact methods such as angle-beam techniques using shear waves, or surface-beam techniques using Lamb waves, are not discussed.1.2 Ultrasonic testing is a common subsurface method for detection of laminar oriented discontinuities. Two techniques can be considered based on panel surface accessibility; pulse echo for one sided and through transmission (bubblers/squirters) for two sided. As used in this practice, both require the use of a pulsed straight-beam ultrasonic longitudinal wave followed by observing indications of either the reflected (pulse-echo) or received (through transmission) wave. The general types of anomalies detected by both techniques include foreign materials, delamination, disbond/un-bond, fiber de-bonding, inclusions, porosity, and voids.1.3 This practice provides two ultrasonic test procedures. Each has its own merits and requirements for inspection and shall be selected as agreed upon in a contractual document.1.3.1 Test Procedure A, Pulse Echo (non-contacting and contacting), is at a minimum a single transducer transmitting and receiving a longitudinal wave in the range of 0.5 to 20 MHz (see Fig. 1). This procedure requires access to only one side of the specimen. This procedure can be conducted by automated or manual means. Automated and manual test results may be imaged or recorded.FIG. 1 Test Procedure A, Pulse Echo Apparatus Set-up1.3.2 Test Procedure B, Through Transmission, is a combination of two transducers. One transmits a longitudinal wave and the other receives the longitudinal wave in the range of 0.5 MHz to 20 MHz (see Fig. 2). This procedure requires access to both sides of the specimen. This procedure is automated and the examination results are recorded.FIG. 2 Test Procedure B, Through Transmission Apparatus Set-up1.4 This practice does not specify accept-reject criteria.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Rock cores are samples of record of the existing subsurface conditions at given borehole locations. The samples are expected to provide indications about the geological, physical, and engineering nature of the subsurface for use in the design and construction of an engineered structure. The core samples need to be preserved using specific procedures for a stipulated time (Practices D5079). The period of storage depends upon the nature and significance of the engineered structure.5.2 Rock cores always need to be handled such that their properties are not altered in any way due to mechanical damage or changes in ambient conditions of moisture and temperature or other environmental factors.1.1 This practice covers the guidelines, requirements, and procedures for core drilling, coring, and sampling of rock for the purposes of site exploration. The borehole could be vertical, horizontal, or angled.1.2 This practice is described in the context of obtaining data for the design, construction, or maintenance of structures, and applies to surface drilling and drilling from adits and exploratory tunnels.1.3 This practice applies to core drilling in hard and soft rock.1.4 This practice does not address considerations for core drilling for geo-environmental site characterization and installation of water quality monitoring devices (see Guides D5782 and D5783).1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This practice does not purport to comprehensively address all of the methods and the issues associated with coring and sampling of rock. Users should seek qualified professionals for decisions as to the proper equipment and methods that would be most successful for their site exploration. Other methods may be available for drilling and sampling of rock, and qualified professionals should have flexibility to exercise judgment as to possible alternatives not covered in this practice. This practice is current at the time of issue, but new alternative methods may become available prior to revisions; therefore, users should consult with manufacturers or producers prior to specifying program requirements.This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Also, the user must comply with prevalent regulatory codes, such as OSHA (Occupational Health and Safety Administration) guidelines, while using this practice. For good safety practice, consult applicable OSHA regulations and other safety guides on drilling (1).

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Sandwich panel cores may change planar dimensions when heated. This phenomenon can be associated with the effects of heating upon the core material itself, as well as changes in core moisture content resulting from the heating cycle. It is prudent to know if this may be problematic with regard to the intended final part dimensions.5.2 This test method provides a standard method of characterizing the dimensional stability of sandwich core materials for design properties, material specifications, research and development applications, and quality assurance.5.3 Factors that influence dimensional stability of sandwich core materials and shall therefore be reported include the following: core material, methods of material fabrication, core geometry, core thickness, core thickness uniformity, cell wall thickness, specimen geometry, specimen preparation, heating and cooling environments (including temperatures and humidity levels), and specimen conditioning (both prior to and after heating).1.1 This test method covers the determination of the sandwich core dimensional stability in the two plan dimensions.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.2.1 Within the text, the inch-pound units are shown in brackets.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Shearography is commonly used during product process design and optimization, process control, after manufacture inspection, and in service inspection, and can be used to measure static and dynamic axial (tensile and compressive) strain, as well as shearing, Poisson, bending, and torsional strains. The general types of defects detected by shearography include delamination, deformation under load, disbond/unbond, microcracks, and thickness variation.5.2 Additional information is given in Guide E2533 about the advantages and limitations of the shearography technique, use of related ASTM documents, specimen geometry and size considerations, calibration and standardization, and physical reference standards.5.3 For procedures for shearography of filament-wound pressure vessels, otherwise known as composite overwrapped pressure vessels, consult Guide E2982.5.4 Factors that influence shearography and therefore shall be reported include but are not limited to the following: laminate (matrix and fiber) material, lay-up geometry, fiber volume fraction (flat panels); facing material, core material, facing stack sequence, core geometry (cell size); core density, facing void content, and facing volume percent reinforcement (sandwich core materials); processing and fabrication methods, overall thickness, specimen alignment, specimen conditioning, specimen geometry, and test environment (flat panels and sandwich core materials). Shearography has been used with excellent results for composite and metal face sheet sandwich panels with both honeycomb and foam cores, solid monolithic composite laminates, foam cryogenic fuel tank insulation, bonded cork insulation, aircraft tires, elastomeric and plastic coatings. Frequently, defects at multiple and far side bond lines can be detected.1.1 This practice describes procedures for shearography of polymer matrix composites and sandwich core materials made entirely or in part from fiber-reinforced polymer matrix composites. The composite materials under consideration typically contain continuous high modulus (greater than 20 GPa (3 × 106 psi)) fibers, but may also contain discontinuous fiber, fabric, or particulate reinforcement.1.2 This practice describes established shearography procedures that are currently used by industry and federal agencies that have demonstrated utility in quality assurance of polymer matrix composites and sandwich core materials during product process design and optimization, manufacturing process control, after manufacture inspection, and in service inspection.1.3 This practice has utility for testing of polymer matrix composites and sandwich core materials containing but not limited to bismaleimide, epoxy, phenolic, poly(amideimide), polybenzimidazole, polyester (thermosetting and thermoplas- tic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical as-fabricated geometries include uniaxial, cross-ply and angle-ply laminates; as well as honeycomb and foam core sandwich materials and structures.1.4 This practice does not specify accept-reject criteria and is not intended to be used as a means for approving polymer matrix composites or sandwich core materials for service.1.5 To ensure proper use of the referenced standards, there are recognized nondestructive testing (NDT) specialists that are certified according to industry and company NDT specifications. It is recommended that an NDT specialist be a part of any composite component design, quality assurance, in-service maintenance, or damage examination activity.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1. Scope This clause of Part 1 is applicable, except as follows: 1.1 Replacement: This standard applies to diamond core drills.

定价: 1775元 / 折扣价: 1509

在线阅读 收 藏

5.1 Water permeability is a fundamental physical property that can be used in conjunction with other properties to characterize honeycomb sandwich core materials. Migration testing can be used to characterize and compare the relative permeability of honeycomb core materials to water.5.2 This test method provides a standard method of characterizing the rate of water migration within honeycomb sandwich core materials for design properties, material specifications, research and development applications, and quality assurance.5.3 Factors that influence water migration rate characteristics of honeycomb sandwich core materials and shall therefore be reported include the following: core material, methods of material fabrication, core geometry (cell size), core thickness, core thickness uniformity, cell wall thickness, specimen geometry, specimen preparation, specimen conditioning, facing material, facing permeability, adhesive permeability, adhesive thickness, and methods of mass, volume, and water column height measurement.1.1 This test method covers the determination of water migration in honeycomb core materials.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.2.1 Within the text, the inch-pound units are shown in brackets.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This test method is a derivative of Test Method A697/A697M specifically designed for testing of toroidal cores which are not covered in Test Method A697/A697M and for testing at magnetic flux densities above the knee of the magnetization curve.3.2 Specimen size typically ranges from 1 in. to 1.25 in. [25.4 mm to 31.8 mm] in inside diameter to 1.5 in. [38.1 mm] in outside diameter with weights ranging from 30 g to 60 g. Provided the test equipment is suitably chosen, there is no obvious limit to the overall size of core that can be tested. If basic material properties are desired, then the requirements of 5.1 must be observed.3.3 The reproducibility and repeatability of this test method are such that this test method is suitable for design, specification acceptance, service evaluation, and research and development.3.4 When testing under sinusoidal flux conditions at magnetic flux densities approaching saturation, highly peaked magnetizing waveforms will be present, and the test instruments used must have crest factor capabilities of at least 3; otherwise erroneous results will be obtained.1.1 This test method covers the determination of several ac magnetic properties of either laminated ring or toroidal tape wound cores made from flat rolled product.1.2 This test method covers test equipment and procedures for determination of specific core loss, specific exciting power, and peak permeability for power and audio frequencies (50 Hz to 20 000 Hz) under sinusoidal flux conditions.1.3 This test method, because of the use of a feedback-controlled power amplifier, is well suited for determination of ac magnetic properties at magnetic flux densities above the knee of the magnetization curve and is particularly useful for testing of high-saturation iron-cobalt alloys (for example, alloys listed in Specification A801), although use of this test method is not restricted to a particular type of material.1.4 This test method shall be used in conjunction with Practice A34/A34M and Terminology A340.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 A properly collected sample that includes the total coal bed interval provides a sample that is a representative cross section of the coal bed at the point of sampling. Core samples are taken for subsequent testing needed for evaluation of coal quality and characterization for commercial evaluations, for planning of mining operations to maintain coal quality, for the determination of coal rank in accordance with Classification D388, and for geologic coal resource studies.NOTE 1: Because of the potential for lateral variability, a sample may not represent the quality of the coal bed at another sample point. The reliability of the data generated from core samples is dependent on the number and spacing of the sample points and the variability of the coal characteristics in a given area.5.2 Moisture determined directly from a core sample shall be considered questionable in any core sample because of possible contamination from drilling fluids and groundwater. If a more representative estimate of the inherent moisture content of the core sample (with the exception of certain low-rank coals) is desired, the sample should be analyzed according to Test Method D1412.1.1 This practice describes procedures for collecting and handling a coal sample from a core recovered from a borehole.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Thickness is one of the basic index properties used to control and track the quality of many geomembranes. Additionally, many mechanical properties (for example, tensile yield strength, puncture strength, etc.) can be related to core thickness. Core thickness values may also be required in calculation of some parameters such as diffusion coefficients or tensile stresses.5.2 The measured core thickness of geomembranes may vary considerably depending on the pressure applied to the specimen during measurement. To reduce variation in measurements and the chance of unrealistically low values due to excessively high pressures, a specific gauge point geometry and applied force are prescribed in this test method.5.3 The test method is applicable to all commonly available textured geomembranes that are deployed as manufactured geomembrane sheets.1.1 This test method covers a procedure to measure the core thickness of textured geomembranes.1.2 This test method does not provide thickness values for geomembranes under variable normal stresses.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers coextruded poly(vinyl chloride) (PVC) plastic drain, waste and vent pipe made to Schedule 40 iron pipe sizes (IPS) and produced by the coextrusion process with concentric inner and outer solid PVC layers and the core consisting of closed-cell cellular PVC. Plastic which does not meet the material requirements specified in Section 5 is excluded from single layer and all coextruded layers.1.2 Fittings meeting the requirements of Specification D2665 and D3311 are suitable for use with pipe meeting the requirements of this specification.1.3 Poly(vinyl chloride) plastic which does not meet the definitions of virgin PVC plastic as given in 5.1 is excluded, as performance of plastic other than those defined as virgin was not determined. PVC rework plastic which meets the requirements of rework plastic as given in 5.2 is acceptable.1.4 Reprocessed plastic or recycled plastic as defined in Terminology D883 is excluded.1.5 Recommendations for storage, joining and installation are provided in Appendix X1, Appendix X2, and Appendix X3 respectively.1.6 The text of this specification references notes, footnotes and appendices which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the specification.1.7 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the standard requirements for round, high-strength, zinc-coated (galvanized), steel core wire with Class A zinc coating used for mechanical reinforcement in the manufacture of special steel reinforced aluminum and aluminum-alloy conductors. The base metal shall be steel produced by the open-hearth, electric-furnace, or basic-oxygen process and the wire shall be cold drawn and coated with zinc. Joints may be made at any stage of processing prior to final cold drawing by the electric butt-weld or flash-welding process. Chemical analysis shall be conducted; wherein, the steel shall conform to the chemical composition requirements for carbon, manganese, phosphorus, sulfur, and silicon. The zinc-coated steel core wire shall conform to the tensile strength and elongation requirements which shall be obtained using a tensile test method. The material shall also undergo wrap and adherence tests; wherein, the wire shall be capable of being wrapped in a close helix without cracking or flaking.1.1 This specification covers round, high-strength, zinc-coated (galvanized), steel core wire with Class A zinc coating (GA3) for use in overhead electrical conductors.1.2 This specification covers wire of diameter from 0.0500 in. to 0.1900 in. inclusive or 1.27 mm to 4.82 mm inclusive.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
80 条记录,每页 15 条,当前第 1 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页