微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method separates asphalts into four well-defined fractions. Analysis of these fractions can be used to evaluate asphalt composition (1, 2).4 For example, one can compare the ratios of the fractions with other asphalt systems to evaluate processing and aging parameters that relate to performance properties of the asphalt.1.1 This test method covers the separation of four defined fractions from petroleum asphalts. The four fractions are defined as saturates, naphthene aromatics, polar aromatics, and iso-octane insoluble asphaltenes. This method can also be used to isolate saturates, naphthene aromatics, and polar aromatics from distillate products such as vacuum gas oils, lubricating oils, and cycle stocks. These distillate products usually do not contain asphaltenes.1.2 The values stated in SI units are to be regarded as standard.1.3 Since a precision estimate for this standard has not been developed, this test method is to be used for research or informational purposes only. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purposes.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method can be used to determine the coefficient of friction of lubricating fluids under the prescribed test conditions. The user of this test method should determine to his own satisfaction whether results of this test method correlate with field performance or other bench test machines.1.1 This test method covers a procedure for determining the coefficient of friction by means of the Four-Ball Wear Test Machine.21.2 The values stated in either SI units or in the former cm-kgf metric units are to be regarded separately as the standard. Within the text the cm-kgf units are shown in parentheses. The values stated in each system are not exact equivalents, therefore each system must be used independently of the other. Combining values from the two systems can result in nonconformance to specification.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in 7.3 and 7.4.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 An acute toxicity test is conducted to assess the effects of a short term exposure of organisms to a test material under specific experimental conditions. An acute toxicity test does not provide information concerning whether delayed effects will occur and typically evaluates effects on survival. A chronic test is typically longer in duration and includes a sublethal endpoint to assess effects on a population that might occur beyond the exposure period. Because the bivalve embryo development test includes a sublethal endpoint, but is also short in duration, these tests are considered to be short-term chronic tests.5.2 Because embryos and larvae are usually assumed to be the most sensitive life stages of these bivalve mollusc species and because these species are commercially and recreationally important, results of these acute tests are often considered to be a good indication of the acceptability of pollutant concentrations to saltwater molluscan species in general. Results of these acute toxicity tests are often assumed to be an important consideration when assessing the hazard of materials to other saltwater organisms (see Guide E1023) or when deriving water quality criteria for saltwater organisms (3) .5.3 Results of short-term chronic toxicity tests might be used to predict effects likely to occur to aquatic organisms in field situations as a result of exposure under comparable conditions, except that toxicity to benthic species might depend on sorption or settling of the test material onto the substrate.5.4 Results of short-term chronic tests might be used to compare the sensitivities of different species to different test materials, and to determine the effects of various environmental factors on results of such tests.5.5 Results of short-term chronic toxicity tests might be useful for studying biological availability of, and structure activity relationships between, test materials.5.6 Results of any toxicity test will depend on temperature, composition of the dilution water, condition of the test organisms, and other factors.5.7 Results of short-term chronic toxicity tests might be used to predict effects likely to occur to aquatic organisms exposed to suspended particulates of dredged sediments disposed through the water column.5.8 Results of short-term chronic toxicity tests might be used to predict effects likely to occur to aquatic organisms exposed to a bedded whole sediments.1.1 This guide describes procedures for obtaining laboratory data concerning the acute effects of a test material on embryos and the resulting larvae of four species of saltwater bivalve molluscs (Pacific oyster, Crassostrea gigas Thunberg; eastern oyster, Crassostrea virginica Gmelin; quahog or hard clam, Mercenaria mercenaria Linnaeus; and the mussel species complex (Mytilus spp.) including the blue mussel, Mytilus edulis Linnaeus; the Mediterranean mussel, Mytilus galloprovincialis Lamark; and the Northern Bay Mussel, Mytilus trossulus Gould) during static 48-h exposures. These procedures will probably be useful for conducting static short-term chronic toxicity tests starting with embryos of other bivalve species (1)2 although modifications might be necessary.1.2 Other modifications of these procedures might be justified by special needs or circumstances. Although using procedures appropriate to a particular species or special needs and circumstances is more important than following prescribed procedures, results of tests conducted by using unusual procedures are not likely to be comparable to results of many other tests. Comparison of results obtained by using modified and unmodified versions of these procedures might provide useful information concerning new concepts and procedures for conducting 48-h acute tests starting with embryos of bivalve molluscs.1.3 These procedures are applicable to most chemicals, either individually or in formulations, commercial products, or known mixtures. With appropriate modifications these procedures can be used to conduct acute tests on temperature, dissolved oxygen, and pH and on such materials as aqueous effluents (see also Guide E1192), leachates, oils, particulate matter, sediments, and surface waters. Renewal tests might be preferable to static tests for materials that have a high oxygen demand, are highly volatile, are rapidly biologically or chemically transformed in aqueous solution, or are removed from test solutions in substantial quantities by the test chambers or organisms during the test.1.4 Results of toxicity tests with embryos of bivalve molluscs should usually be reported as the EC50 based on the total incompletely developed and dead organisms. It might also be desirable to report the LC50 based only on death. In some situations, it might only be necessary to determine whether a specific concentration is toxic to embryos or whether the EC50 is above or below a specific concentration.1.5 This guide is arranged as follows:  SectionReferenced Documents 2Terminology 3Summary of Guide 4 5Hazards 6Apparatus 7 Facilities 7.1 Construction Materials 7.2 Test Chambers 7.3 Cleaning 7.4 Acceptability 7.5Dilution Water 8 Requirements 8.1 Source 8.2 Treatments 8.3 Characterization 8.4Test Material 9 General 9.1 Stock Solution 9.2 Test Concentration(s) 9.3Test Organisms 10 Species 10.1 Age 10.2 Handling 10.3 Brood Stock Source and Condition 10.4 Spawning and Fertilization 10.5 Quality 10.6Procedure 11 Experimental Design 11.1 Dissolved Oxygen 11.2 Temperature 11.3 Beginning the Test 11.4 Feeding 11.5 Duration of Test 11.6 Biological Data 11.7 Other Measurements 11.8Analytical Methods 12Acceptability of Test 13Calculation of Results 14Report 15Annex Annex A11.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 6.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 The use of the body measurement information in Tables 1 and 2 will assist manufacturers in developing patterns and garments that are consistent with the current anthropometric characteristics of the population of interest. This practice should in turn reduce or minimize consumer confusion and dissatisfaction related to apparel sizing. (Also refer to ISO 3635 Size Designation Procedures.)4.2 Three-dimensional avatars depicting each of the mature mens sizes in short, regular and tall, were created by Alvanon, Inc. and included in this standard to assist manufacturers in visualizing the posture, shape, and proportions generated by the measurements charts in the accompanying Tables. (Avatar 1-6) See Figs. 1-3.FIG. 1 Mature Men - ShortFIG. 2 Mature Men - RegularFIG. 3 Mature Men - Tall1.1 These tables list body measurements of mature male figure type, age 35 and older, sizes 34 through 52 in Short, Regular, and Tall. Although these are body measurements, they can be used as a baseline in designing apparel for Mature Men in this size range when considering such factors as fabric type, ease for body movement, styling, and fit.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Applying Test Method F390 to large flat panel substrates presents a number of serious difficulties not anticipated in the development of that standard. The following problems are encountered.5.1.1 The four-point probe method may be destructive to the thin film being measured. Sampling should therefore be taken close to an edge or corner of the plate, where the film is expendable. Special geometrical correction factors are then required to derive the true sheet resistance.5.1.2 Test Method F390 is limited to a conventional collinear probe arrangement, but a staggered collinear and square arrays are useful in particular circumstances. Correction factors are needed to account for nonconventional probe arrangements.5.1.3 Test Method F390 anticipates a precision testing arrangement in which the probe mount and sample are rigidly positioned. There is no corresponding apparatus available for testing large glass or plastic substrates. Indeed, it is common in flat panel display making that the probe is hand held by the operator.5.1.4 It is difficult, given the conditions cited in 5.1.3, to ensure that uniform probe spacing is not degraded by rough handling of the equipment. The phased square array, described, averages out probe placement errors.5.1.5 This practice is estimated to be precise to the following levels. Otherwise acceptable precision may be degraded by probe wobble, however (see 8.6.4).5.1.5.1 As a referee method, in which the probe and measuring apparatus are checked and qualified before use by the procedures of Test Method F390 paragraph 7 and this practice, paragraph 8: standard deviation, s, from measured sheet resistance, RS, is ≤ 0.01 RS.5.1.5.2 As a routine method, with periodic qualifications of probe and measuring apparatus by the procedures of Test Method F390 paragraph 7 and this practice, paragraph 8: standard deviation, s, from measured sheet resistance, RS, is ≤ 0.02 RS.1.1 This practice describes methods for measuring the sheet electrical resistance of sputtered thin conductive films deposited on large insulating substrates, used in making flat panel information displays. It is assumed that the thickness of the conductive thin film is much thinner than the spacing of the contact probes used to measure the sheet resistance.1.2 This standard is intended to be used with Test Method F390.1.3 Sheet resistivity in the range 0.5 to 5000 ohms per square may be measured by this practice. The sheet resistance is assumed uniform in the area being probed.1.4 This practice is applicable to flat surfaces only.1.5 Probe pin spacings of 1.5 mm to 5.0 mm, inclusive (0.059 to 0.197 in inclusive) are covered by this practice.1.6 The method in this practice is potentially destructive to the thin film in the immediate area in which the measurement is made. Areas tested should thus be characteristic of the functional part of the substrate, but should be remote from critical active regions. The method is suitable for characterizing dummy test substrates processed at the same time as substrates of interest.1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This test method may be used for material development, quality control, characterization, and design data generation purposes.4.2 This test method determines the maximum loading on a graphite specimen with simple beam geometry in 4-point bending, and it provides a means for the calculation of flexural strength at ambient temperature and environmental conditions.AbstractThis test method details the standard procedures for determining the flexural strength of manufactured carbon and graphite articles using a simple beam in four-point loading at room temperature. The four-point loading fixture shall consist of spherical bearing blocks of hardened steel or its equivalent to ensure that forces applied to the beam are normal only and without eccentricity, and distortion of the loading member is prevented. Judicious use of linkages, rocker bearings, and flexure plates may maintain the parallel direction of loads and reactions. The test specimens shall be prepared to yield a parallelepiped with cross sections that are rectangular, faces that are parallel and flat, and edges that are free from visible flaws and chips.1.1 This test method covers determination of the flexural strength of manufactured carbon and graphite articles using a simple beam in four-point loading at room temperature.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method can be used to determine the relative wear preventive properties of lubricating fluids in sliding contact under the prescribed test conditions. No attempt has been made to correlate this test with balls in rolling contact. The user of this test method should determine to his own satisfaction whether results of this test procedure correlate with field performance or other bench test machines.1.1 This test method covers a procedure for making a preliminary evaluation of the anti-wear properties of fluid lubricants in sliding contact by means of the Four-Ball Wear Test Machine. Evaluation of lubricating grease using the same machine is detailed in Test Method D2266.1.2 The values stated in SI units are to be regarded as standard. Because the equipment used in this test method is only available in kgf units, SI units in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The Calculated Cetane Index by Four Variable Equation is useful for estimating ASTM cetane number when a test engine is not available for determining this property directly and when cetane improver is not used. It may be conveniently employed for estimating cetane number when the quantity of sample available is too small for an engine rating. In cases where the ASTM cetane number of a fuel has been previously established, the Calculated Cetane Index by Four Variable Equation is useful as a cetane number check on subsequent batches of that fuel, provided the fuel's source and mode of manufacture remain unchanged.NOTE 2: Test Methods D6890 and D7170 may be used to obtain a Derived Cetane Number (DCN) when the quantity of sample is too small for an engine test. These methods do measure the effect of cetane improver.5.2 Within the range from 32.5 to 56.5 cetane number, the expected error of prediction of Procedure A of the Calculated Cetane Index by Four Variable Equation will be less than ±2 cetane numbers for 65 % of the distillate fuels evaluated. Errors may be greater for fuels whose properties fall outside the recommended range of application.1.1 The calculated Cetane Index by Four Variable Equation provides a means for estimating the ASTM cetane number (Test Method D613) of distillate fuels from density and distillation recovery temperature measurements. The value computed from the equation is termed the Calculated Cetane Index by Four Variable Equation.1.2 The Calculated Cetane Index by Four Variable Equation is not an optional method for expressing ASTM cetane number. It is a supplementary tool for estimating cetane number when a result by Test Method D613 is not available and if cetane improver is not used. As a supplementary tool, the Calculated Cetane Index by Four Variable equation must be used with due regard for its limitations.1.3 Procedure A is to be used for Specification D975, Grades No. 1–D S15, No. 1–D S500, No. 1–D S5000, No. 2–D S15, No. 2–D S5000, and No. 4–D. This method for estimating cetane number was developed by Chevron Research Co.2 Procedure A is based on a data set including a relatively small number of No. 1–D fuels. Test Method D4737 Procedure A may be less applicable to No. 1–D S15, No. 1–D S500, and No. 1–D S5000 than to No. 2–D grade S5000 or to No. 4–D fuels.1.3.1 Procedure A has been verified as applicable to Grade No. 2–D S15 diesel fuels.31.4 Procedure B is to be used for Specification D975, Grade No. 2–D S500.1.5 The test method “Calculated Cetane Index by Four Variable Equation” is particularly applicable to Grade 1–D S5000, Grade No. 1–D S500, Grade No. 2–D S5000 and Grade No. 2–D S500 diesel fuel oils containing straight-run and cracked stocks, and their blends. It can also be used for heavier fuels with 90 % recovery points less than 382 °C and for fuels containing derivatives from oil sands and oil shale.NOTE 1: Sxx is the designation for maximum sulfur level specified for the grade. For example, S500 grades are those with a maximum sulfur limit of 500 ppm (μg/g).1.6 Biodiesel blends are excluded from this test method, because they were not part of the datasets use to develop either Procedure A or B.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The laboratory fatigue life determined by this standard for beam specimens has been used to estimate the fatigue life of asphalt mixture pavement layers under repeated traffic loading. Although the field performance of asphalt mixtures is impacted by many factors (traffic variation, loading rate, and wander; climate variation; rest periods between loads; aging; etc.), it has been more accurately predicted when laboratory properties are known along with an estimate of the strain level induced at the layer depth by the traffic wheel load traveling over the pavement.NOTE 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method provides a procedure for determining a fatigue curve that is developed using three or more strain levels. The resulting data can be used in the fatigue models for mechanistic-empirical pavement design (that is, Pavement ME). Failure points are determined for estimating the fatigue life of 380 mm long by 50 mm thick by 63 mm in breadth (width) asphalt mixture beam (rectangular prism) specimens sawed from laboratory or field-compacted asphalt mixture, which are subjected to repeated flexural bending.1.2 The largest nominal maximum aggregate size (NMAS) recommended for beams 50 mm thick is 19 mm. Beams made with an NMAS greater than 19 mm might significantly interfere with the material response, thereby affecting the repeatability of the test.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard, with the exception of degrees (°) where angle is specified in accordance with IEEE/ASTM SI 10.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method, used for specification purposes, differentiates between lubricating greases having low, medium, and high level of extreme-pressure properties. The results do not necessarily correlate with results from service.45.2 It is noted that lubricating greases that have as their fluid component a silicone, halogenated silicone, or a mixture comprising silicone fluid and petroleum oil, are not applicable to this method of test.1.1 This test method covers the determination of the load-carrying properties of lubricating greases. Three determinations are made:1.1.1 Load-Wear Index (formerly called Mean-Hertz Load),1.1.2 Weld Point, by means of the Four-Ball Extreme-Pressure (EP) Tester, and1.1.3 Last nonseizure load (LNSL).1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
25 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页