微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
DB50/T 1044-2020 无菌(Germ-free,GF)猪微生物学监测技术规范 现行 发布日期 :  2020-10-10 实施日期 :  2020-12-30

本标准适用于无菌猪生产和使用时微生物学质量控制

定价: 无文本 / 折扣价: 0

在线阅读 收 藏
DB50/T 1043-2020 无菌(Germ-free,GF)猪生产技术规范 现行 发布日期 :  2020-10-10 实施日期 :  2020-12-30

本标准适用于无菌猪的制备、培育和相关实验

定价: 无文本 / 折扣价: 0

在线阅读 收 藏

定价: 176元 / 折扣价: 150

在线阅读 收 藏

定价: 260元 / 折扣价: 221

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

5.1 Petroleum-based diesel may be blended with biodiesel. High levels of free glycerin in biodiesel can cause injector deposits (“gel effect”), as well as clogging fuel systems. High levels of unreacted glycerides can cause injector deposits and can adversely affect cold weather operation and filter plugging.1.1 This test method covers and describes an anion exchange chromatography procedure for determining free and total glycerin content of biodiesel (B100) and blends (B0 to B20) with diesel fuel oils defined by Specification D975 Grades 1-D, 2-D, and low sulfur 1-D and 2-D and Specification D6751 (for B100 feedstocks). It is intended for the analysis of biodiesel and blend samples containing between 0.5 mg/kg to 50 mg/kg glycerin.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The presence and concentration of oil and grease in domestic and industrial wastewater is of concern to the public because of its deleterious health, environmental, safety, and aesthetic effects.5.2 Regulations and standards have been established that require monitoring of oil and grease in water and wastewater.4NOTE 1: Different oil and grease materials may have different infrared absorptivities. Certain materials, such as synthetic silicone-based or perfluorinated oils, may have absoptivities inconsistent with those of naturally occurring oil and grease materials. Caution should be taken when testing matrices suspected of containing proportions of these materials. In such cases, laboratory spike samples, laboratory check samples, equivalency testing, or combinations thereof, using these materials in question may be appropriate.1.1 This test method covers the determination of oil and grease in produced and waste water samples over the concentration range outlined in Table 1 that can be extracted with an infrared-amenable membrane and measured by infrared transmission through the membrane.(A) MDL and recommended reporting range determined by 12.4, which follows the Code of Federal Regulations, 40 CFR, Part 136, Appendix B; limits should be determined by each operator.1.2 This test method defines oil and grease in water as that which is extractable in this test method and measured by infrared transmission.1.3 The method detection limit (MDL) and recommended reporting range are listed in Table 1.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification establishes the requirements for free-cutting copper rod, bar, wire, and shapes of UNS Alloy Nos. C14500, C14510, C14520, C14700, and C18700, suitable for high-speed screw machine work or for general applications. The chemical composition, temper, electrical, tensile strength, and elongation requirements are detailed.1.1 This specification establishes the requirements for free-cutting copper rod, bar, wire, and shapes of UNS Alloy Nos. C14500, C14510, C14520, C14700, and C18700, suitable for high-speed screw machine work or for general applications.1.2 Typically, product made to this specification is furnished as straight lengths. Sizes 1/2 in. [12 mm] and under may be furnished in coils when requested.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers seven types of free-cutting copper rod and bar as follows: Copper or Copper Alloy UNS No. 2 Type C14500 copper-tellurium C14510 copper-tellurium C14520 copper-tellurium C14700 copper-sulfur C18700 copper-lead

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Test Methods A and B are used to establish the weight of the dart when 50 % of the specimens fail under the conditions specified. Data obtained by one test method cannot be compared directly with the other test method nor with those obtained from tests employing different conditions of missile velocity, impinging surface diameter, effective specimen diameter, material construction and finish of the dart head, and film thickness. The values obtained by these test variables are highly dependent on the method of film fabrication.4.2 The results obtained by Test Methods A and B are greatly influenced by the quality of film under test. The confidence limits of data obtained by this procedure can, therefore, vary significantly, depending on the sample quality, uniformity of film gage, die marks, contaminants, etc.4.3 Test Methods A and B have been found useful for specification purposes.NOTE 4: With sufficient data, correlation between test results and field performance can usually be established.4.4 The impact resistance of plastic film, while partly dependent on thickness, has no simple correlation with sample thickness. Hence, impact values cannot be normalized over a range of thickness without producing misleading data as to the actual impact resistance of the material. Data from these test methods are comparable only for specimens that vary by no more than ±25 % from the nominal or average thickness of the specimens tested.4.5 Several impact test methods are used for film. It is sometimes desirable to know the relationships among test results derived by different test methods. A study was conducted in which four films made from two resins (polypropylene and linear low-density polyethylene), with two film thicknesses for each resin, were impacted using Test Methods D1709 (Method A), D3420 (Procedures A and B), and D4272. The test results are shown in the Appendix. Differences in results between Test Methods D1709 and D4272 are not unusual since Test Methods D1709 represents failure initiated energy, while Test Method D4272 is initiation plus completion energy. Some films exhibit consistency when the initiation energy is the same as the total energy. This statement and the test data also appear in the significance sections and appendixes of Test Methods D3420 and D4272.1.1 These test methods cover the determination of the energy that causes plastic film to fail under specified conditions of impact of a free-falling dart. This energy is expressed in terms of the weight (mass) of the missile falling from a specified height which would result in 50 % failure of specimens tested.1.2 Two test methods are described:1.2.1 Test Method A employs a dart with a 38.10 ± 0.13-mm (1.500 ± 0.005-in.) diameter hemispherical head dropped from a height of 0.66 ± 0.01 m (26.0 ± 0.4 in.). This test method can be used for films whose impact resistances require masses of about 50 g to about 6 kg to fracture them.1.2.2 Test Method B employs a dart with a 50.80 ± 0.13-mm (2.000 ± 0.005-in.) diameter hemispherical head dropped from a height of 1.52 ± 0.03 m (60.0 + 0.25, −1.70 in.). Its range of applicability is from about 0.3 kg to about 6 kg.1.3 Two testing techniques are described:1.3.1 The standard technique is the staircase method. By this technique, the missile weight employed during the test is decreased or increased by uniform increments after the testing of each specimen, depending upon the result (fail or not fail) observed for the specimen.1.3.2 The alternative technique provides for testing specimens in successive groups of ten. One missile weight is employed for each group and the missile weight is varied in uniform increments from group to group.1.3.3 The staircase technique and the alternative technique give equivalent results both as to the values of impact failure weight which are obtained and as to the precisions with which they are determined.1.4 The values stated in SI units are to be regarded as standard. The values stated in parentheses are for information only.NOTE 1: Tests on materials that do not break, for any reason, are not considered to be valid. It has been noted that certain materials may stretch so far as to bottom out at the base of certain test instruments without actually rupturing. Subcommittee D20.19 is currently considering methods for testing these materials. Anyone interested in participating in a Task Group should contact the Chairman of Subcommittee D20.19 through ASTM International Headquarters.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 2: Film has been arbitrarily defined as sheeting having nominal thickness not greater than 0.25 mm (0.010 in.).NOTE 3: This test method is technically equivalent to ISO 7765-1:1988, with the exception of a larger tolerance on the drop height in Test Method B, smaller tolerances on the dart diameters for Test Methods A and B, and the requirement for a vented dart well in 5.1.1. Also, the ISO method does not allow the alternative testing technique described in Section 11 of this test method.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Free films are required for conducting tests to evaluate physical and mechanical properties such as tensile and elongation (Test Methods D2370), moisture vapor permeability (Test Methods D1653 and E96/E96M), microbiological activity resistance (Test Method D5590), and other physical properties of organic coatings where the substrate may interfere with the determination.1.1 This practice covers the preparation of free films of organic coatings for use in determining the physical properties of the coatings.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 These test methods cover the determination of the amount of apparent free phenol in synthetic phenolic resins or solutions used for coating purposes. The test method for isolation of the free phenol applies to all the commonly used resins except those containing p-phenyl-phenol. Test Method A applies to the simpler phenols up to and including the xylenols; Test Method B applies to the common alkylated phenols. >1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. >

定价: 0元 / 折扣价: 0

在线阅读 收 藏
58 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页