微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
AS 21667-2012 Health indicators conceptual framework 现行 发布日期 :  2012-12-24 实施日期 : 

定价: 689元 / 折扣价: 586

在线阅读 收 藏
AS 21667-2012 (R2019) Health indicators conceptual framework 现行 发布日期 :  2012-12-24 实施日期 : 

定价: 689元 / 折扣价: 586

在线阅读 收 藏

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

4.1 Indicators may be used to show that products have been exposed to a radiation source. They should be used only to provide a qualitative indication of radiation exposure and may be used to distinguish process loads that have been irradiated from unirradiated loads.NOTE 1: The use of indicators does not eliminate the need for other process-control procedures, such as quantitative dosimetry or the controlled segregation of irradiated from nonirradiated products.NOTE 2: See ISO/ASTM Standards 51608, 51649, 51702, 51939, and 51940 for information on the use of indicators in the various types of processing facilities and for unique product applications.4.2 The indicator manufacturer is obliged to supply a statement regarding the approximate dose level at which the examiner (20/20 vision), at standard illumination (unfiltered daylight, or artificial light of the spectrum and intensity defined by the proper ASTM standard), is able to determine the visual change in the indicator.1.1 This document covers procedures for using radiation-sensitive indicators (referred to hereafter as indicators) in radiation processing. These indicators may be labels, papers, inks or packaging materials which undergo a visual change when exposed to ionizing radiation (1-5).21.2 The purpose for using indicators is to determine visually whether or not a product has been irradiated, rather than to measure different dose levels.1.3 Indicators are not dosimeters and should not be used as a substitute for proper dosimetry. Information about dosimetry systems for radiation processing is provided in other ASTM and ISO/ASTM documents (see ISO/ASTM Guide 51261).1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 618元 / 折扣价: 526 加购物车

在线阅读 收 藏

This practice covers the design, material grouping classification, and manufacture of wire image quality indicators (IQI) used to indicate the quality of radiologic images. This practice, applicable to X-ray and gamma-ray radiology, covers the use of wire penetrameters as the controlling image quality indicator for the material thickness range from 6.4 to 152 mm [0.25 to 6.0 in.]. The alloy group(s) of the material, the thickness or thickness range of the material, and the applicable IQI's that represent the required IQI thickness(s) and alloy(s) shall be considered when selecting IQI's.1.1 This practice2 covers the design, material grouping classification, and manufacture of wire image quality indicators (IQI) used to indicate the quality of radiographic images.1.2 This practice is applicable to X-ray and gamma-ray radiography.1.3 This practice covers the use of wire penetrameters as the controlling image quality indicator for the material thickness range from 6.4 to 152 mm (0.25 to 6.0 in.).1.4 The values stated in inch-pound units are to be regarded as standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers the requirements for two types (Types 8.8 and 10.9) of compressible-washer-type direct tension indicators, in nominal diameter sizes M16 through M36, capable of indicating the achievement of a specified minimum bolt tension in a structural bolt and are intended for installation under either a bolt head or a hardened washer. Steel materials used in the manufacture of direct tension indicators shall be designed, processed, and protectively coated as specified. The direct tension indicators shall conform to required chemical composition, compression load, outside diameter, number of protrusions, thickness values, inside diameter, and protrusion tangential diameter values. 1.1 This specification covers the requirements for compressible-washer-type direct tension indicators capable of indicating the achievement of a specified minimum bolt tension in a structural bolt. 1.2 Two types of direct tension indicators in nominal diameter sizes M16 through M36 are covered: 1.2.1 Type 8.8—direct tension indicators for use with Specification A325M bolts, and 1.2.2 Type 10.9—direct tension indicators for use with Specification A490M bolts. 1.3 Direct tension indicators are intended for installation under either a bolt head or a hardened washer. (See Research Council on Structural Connections: Specification for Structural Joints Using ASTM A325 or A490 Bolts.) 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 The following precautionary statement pertains only to the test methods portions, Section 12, and Appendix X1 of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

AbstractThese test methods establishes the standard procedures for conducting tests to determine the mechanical properties of externally and internally threaded fasteners, washers and direct tension indicators, and rivets. For externally threaded fasteners, the mechanical tests describe the procedures for determining the following properties: product hardness; proof load by length measurement (Method 1), yield strength (Method 2), yield strength of austenitic stainless steel and nonferrous materials (Method 2A), and uniform hardness (Method 3); axial tension of full size products such as fasteners and studs; wedge tension of full size products such as fasteners and studs; tension of machined test specimens including yield point (by drop of the beam or halt of the pointer, autographic diagram, and total extension under load methods), yield strength (by offset, and extension under load methods), tensile strength, elongation, and reduction of area; and total extension at fracture. As for internally threaded fasteners including nonheat- and heat-treated nuts, tests are provided for the determination of product hardness, proof load, and cone proof load. Test for determining the surface and core hardnesses are, conversely, described for direct tension indicators, and through-hardened, carburized, stainless steel, and nonferrous washers. And finally, product hardness testing is described for rivets. The test method for determining embrittlement of metallic coated externally threaded fasteners is detailed as well.1.1 These test methods cover establishment of procedures for conducting tests to determine the mechanical properties of externally and internally threaded fasteners, washers, direct tension indicators, and rivets.1.2 Property requirements and the applicable tests for their determination are specified in individual product standards. In those instances where the testing requirements are unique or at variance with these standard procedures, the product standard shall specify the controlling testing requirements. In the absence of any specified test requirement(s), these test methods shall apply.1.3 These test methods describe mechanical tests for determining the following properties:  SectionFor Externally Threaded Fasteners: 3 Product Hardness 3.1 Proof Load 3.2.1  Method 1, Length Measurement 3.2.3  Method 2, Yield Strength 3.2.4  Method 3, Uniform Hardness 3.2.5 Axial Tension Testing of Full-Size Product 3.4 Wedge Tension Testing of Full-Size Product 3.5 Tension Testing of Machined Test Specimens 3.6 Total Extension at Fracture Test Single Sheer Test 3.73.8For Internally Threaded Fasteners: 4 Product Hardness 4.1 Proof Load Test 4.2 Cone Proof Load Test 4.3For Washers and Direct Tension Indicators: 5 Product Hardness-General Requirements 5.1 Through Hardened Washers 5.2 Carburized Washers 5.3 Stainless Steel and Nonferrous Washers 5.4 Direct Tension Indicators 5.5 Compression Load 5.6For Rivets: 6 Product Hardness 6.1Test for Embrittlement of Metallic-Coated Externally Threaded   Fasteners 7Test Method for Determining Decarburization and Carburization 81.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.NOTE 1: The values are stated in inch-pound for inch fasteners and SI metric units for metric fasteners.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The BPI is designed to yield quantitative information concerning neutron beam and image system parameters that contribute to film exposure and, thereby, affect overall image quality. For proper measurements of film exposure due to the neutron beam constituents, the BPI must be fabricated in accordance with this practice.5.2 This practice shall be followed for the fabrication of all Beam Purity Indicators to be used with Test Method E545 to determine image quality in direct thermal neutron radiography.1.1 This practice covers the material and fabrication of a Beam Purity Indicator (BPI), which can be used to determine the relative quality of radiographic images produced by direct, thermal neutron radiographic examination.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
AS 2103-1978 Dial gauges and dial test indicators (metric series) 被代替 发布日期 :  1970-01-01 实施日期 : 

定价: 345元 / 折扣价: 294 加购物车

在线阅读 收 藏

5.1 The only truly valid image quality indicator is a material or component, equivalent to the part being neutron radiographed, with a known standard discontinuity, inclusion, omission, or flaw (reference standard comparison part). The SI is designed to substitute for the reference standard, providing qualitative information on hole and gap sensitivity in a single unit. Fabrication in accordance with this practice is vital for accurate and consistent measurements.5.2 This practice shall be followed for the fabrication of all SIs to be used with Test Method E545 to determine image quality in direct thermal neutron radiography. Devices constructed to previous versions of this practice, or Test Method E545 for devices built between 1981 and 1991, can also be used.1.1 This practice covers the fabrication of Sensitivity Indicators (SI), which can be used to determine the relative quality of film radiographic images produced by direct, thermal neutron radiographic examination.1.2 Units—The values stated in inch-pound units are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Expiration dates are often marked on the packages of perishable products to indicate the presumed end of their shelf lives. Since the shelf lives of most perishable products are temperature dependent, the expiration date is determined by assuming the product will be kept within a prescribed temperature range for its entire life. A problem with this method is that there is no way to determine if the shelf life of a product has been shortened by exposure to a higher temperature. A time-temperature indicator solves this problem when attached to the package because it reaches its end point sooner when exposed to a higher temperature.3.2 In order to directly indicate the end of the shelf life, the time-temperature indicator characteristics should be matched as closely as possible to the quality characteristics of the product. When kept at the standard storage temperature for the product, the indicator should reach its end point at the same time as the product's shelf life. In addition, to determine the accuracy of the match at other temperatures, the change of shelf life with temperature should be known for both the product and the indicator. The Arrhenius relationship is a common and convenient method of describing the change of shelf life with temperature. In cases where it is not applicable, individual time-temperature points for the product may be established and an approximate correlation with the TTI obtained.3.3 When attached to the package of a perishable product, a time-temperature indicator may supplement, or in some cases replace, the expiration date code. The addition of a TTI provides a greater level of confidence that the perishable product is within its shelf life because it responds to the actual temperature conditions to which the product has been exposed.3.4 In the case of minimally processed refrigerated foods, the rapid growth of pathogenic bacteria at elevated temperatures may pose a serious health hazard even before the deterioration of the quality of the product becomes apparent to the consumer. In this case, an expiration date may be used for storage at the standard temperature, while a threshold-temperature TTI is used to indicate the exposure to temperatures at which growth becomes measurable. It is also possible to use a dual-function TTI, in which case the standard TTI would indicate the shelf life at the correct storage temperature while the threshold-temperature part would indicate the exposure to higher temperatures.1.1 This guide covers information on the selection of commercially available time-temperature indicators (TTIs) for noninvasive external package use on perishable products, such as food and pharmaceuticals. When attached to the package of a perishable product, TTIs are used to measure the combined time and temperature history of the product in order to predict the remaining shelf life of the product or to signal the end of its usable shelf life. It is the responsibility of the processor of the perishable product to determine the shelf life of a product at the appropriate temperatures and to consult with the indicator manufacturer to select the available indicator which most closely matches the quality of the product as a function of time and temperature.NOTE 1: Besides time-temperature indicator, TTI is also an abbreviation for time-temperature monitor and time-temperature integrator.1.2 Time-temperature indicators may be integrated into a Hazard Analysis and Critical Control Point (HACCP) plan. Appropriate instructions should be established for handling products for which either the indicator has signaled the end of usable shelf life or the shelf life of the product at its normal storage temperature has been reached.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers the documentation of the principal notions necessary and sufficient to assign value to a controlled health vocabulary. This specification will serve as a guide for governments, funding agencies, terminology developers, terminology integration organizations, and the purchasers and users of controlled health terminology systems working toward improved terminological development and recognition of value in a controlled health vocabulary. It is applicable to all areas of health care about which information is kept or utilized. It is intended to complement and utilize those notions already identified by other national and international standards bodies.1.2 This specification will provide vocabulary developers and authors with the guidelines needed to construct useful, maintainable controlled health vocabularies. These tenets do not attempt to specify all of the richness that can be incorporated into a health terminology. However this specification does specify the minimal requirements, which, if not adhered to, will ensure that the vocabulary will have limited generalizability and will be very difficult, if not impossible, to maintain. This specification will provide terminology developers with a sturdy starting point for the development of controlled health vocabularies. This foundation serves as the basis from which vocabulary developers will build robust, large-scale, reliable and maintainable terminologies.1.3 This specification explicitly does not refer to classifications or coding systems (for example, a simple list of pairs of rubrics and codes) that are not designed to be used clinically.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
27 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页