微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 78元 / 折扣价: 67 加购物车

在线阅读 收 藏

5.1 Some insulation materials contain moisture, which will affect the thermal and other physical properties of the insulation.1.1 This test method will determine the moisture content, as a percentage of the dry weight of organic and inorganic insulation materials.1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the basic requirements for chromium-free fastener coatings that combine an inorganic zinc-rich basecoat with an aluminum-rich topcoat that contains an integrated lubricant. These coatings are applied by conventional dip-spin, dip-drain, or spray methods to ferrous parts which can be handled through a cleaning, or phosphate, coating, and baking operation. Phosphating or shot blast is required to clean and prepare the surface of the steel. These coatings are bake cured at temperatures up to 500°F.1.1 This specification covers the basic requirements for chromium-free fastener coatings that combine an inorganic zinc-rich basecoat with an aluminum-rich topcoat that contains an integrated lubricant.1.2 These coatings are applied by conventional dip-spin, dip-drain, or spray methods to ferrous parts which can be handled through a cleaning, or phosphate, coating, and baking operation. Phosphating or shot blast is required to clean and prepare the surface of the steel. These coatings are bake cured at temperatures up to 500°F.NOTE 1: If used, phosphate to be used in accordance with Specification F1137, grade 0.1.3 Units—The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Capillary ion electrophoresis provides a simultaneous separation and determination of several inorganic anions using nanolitres of sample in a single injection. All anions present in the sample matrix will be visualized yielding an anionic profile of the sample.5.2 Analysis time is less than 5 minutes with sufficient sensitivity for drinking water and wastewater applications. Time between samplings is less than seven minutes allowing for high sample throughput.5.3 Minimal sample preparation is necessary for drinking water and wastewater matrices. Typically, only a dilution with water is needed.5.4 This test method is intended as an alternative to other multi-analyte methods and various wet chemistries for the determination of inorganic anions in water and wastewater. Compared to other multi-analyte methods the major benefits of CIE are speed of analysis, simplicity, and reduced reagent consumption and operating costs.1.1 This test method covers the determination of the inorganic anions fluoride, bromide, chloride, nitrite, nitrate, ortho-phosphate, and sulfate in drinking water, wastewater, and other aqueous matrices using capillary ion electrophoresis (CIE) with indirect UV detection. See Figs. 1-6.1.2 The test method uses a chromate-based electrolyte and indirect UV detection at 254 nm. It is applicable for the determination or inorganic anions in the range of 0.1 to 50 mg/L except for fluoride whose range is 0.1 to 25 mg/L.1.3 It is the responsibility of the user to ensure the validity of this test method for other anion concentrations and untested aqueous matrices.NOTE 1: The highest accepted anion concentration submitted for precision and bias extend the anion concentration range for the following anions: Chloride to 93 mg/L, Sulfate to 90 mg/L, Nitrate to 72 mg/L, and ortho-phosphate to 58 mg/L.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Inorganic constituents in water and wastewater must be identified and measured to support effective water quality monitoring and control programs. Currently, one of the simplest, most practical and cost effective means of accomplishing this is through the use of chemical test kits and refills. A more detailed discussion is presented in ASTM STP 1102.55.2 Test kits have been accepted for many applications, including routine monitoring, compliance reporting, rapid screening, trouble investigation, and tracking contaminant source.5.3 Test kits offer time-saving advantages to the user. They are particularly appropriate for field use and usually are easy to use. Users do not need to have a high level of technical expertise. Relatively unskilled staff can be trained to make accurate determinations using kits that include a premixed liquid reagent, premeasured reagent (tablets, powders, or glass ampoules), and premeasured sample (evacuated glass ampoules).1.1 This guide covers general considerations for the use of test kits for quantitative determination of analytes in water and wastewater. Test kits are available from various manufacturers for the determination of a wide variety of analytes in drinking water, surface or ground waters, domestic and industrial feedwaters and wastes, and water used in power generation and steam raising. See Table 1 for a listing of some of the types of kits that are available for various inorganic analytes in water.2(A) Kit Methodology: A = appearance/turbidity, C = visual colorimetric, GNG = go no go, P = photometric, and T = titrimetric.1.2 Ranges, detection limits, sensitivity, accuracy, and susceptibility to interferences vary from kit to kit, depending on the methodology selected by the manufacturer. In some cases, kits are designed to replicate exactly an official test method of a standard-setting organization such as the Association of Official Analytical Chemists (AOAC), American Public Health Association (APHA), ASTM, or the U.S. Environmental Protection Agency (USEPA). In other cases, minor modifications of official test methods are made for various reasons, such as to improve performance, operator convenience, or ease of use. Adjustments may be made to sample size, reagent volumes and concentrations, timing, and details of the analytical finish. In yet other cases, major changes may be made to the official test method, such as the omission of analytical steps, change of the analytical finish, omission of reagents, or substitution of one reagent for another. Reagents in test kits are often combined to obtain a fewer number and make the test easier to use. Additives may also be used to minimize interferences and to make the reagent more stable with time. A kit test method may be based on a completely different technology, not approved by any official or standard-setting organization. Combinations of test kits—multi-parameter test kits—may be packaged to satisfy the requirements of a particular application conveniently. The test kits in such combination products may be used to make dozens of determinations of several parameters.1.3 Test kit reagent refills are commonly available from manufacturers. Refills permit cost savings through reuse of the major test kit components.1.4 Because of the wide differences among kits and methodologies for different analytes, universal instructions cannot be provided. Instead, the user should follow the instructions provided by the manufacturer of a particular kit.1.5 A test kit or kit component should not be used after the manufacturer's expiration date; it is the user's responsibility to determine that the performance is satisfactory.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 10.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Ethanol is used as a blending agent added to gasoline. Sulfates are indicated in filter plugging deposits and fuel injector deposits. When fuel ethanol is burned, sulfates may contribute to sulfuric acid emissions. Ethanol acceptability for use depends on the sulfate content. Sulfate content, as measured by this test method, can be used as one measure of determination of the acceptability of ethanol for automotive spark-ignition engine fuel use.1.1 This test method covers a potentiometric titration procedure for determining the existent inorganic sulfate content of hydrous, anhydrous ethanol, and anhydrous denatured ethanol, which is added as a blending agent with spark ignition fuels. It is intended for the analysis of denatured ethanol samples containing between 1.0 mg/kg to 20 mg/kg existent inorganic sulfate.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Material Safety Data Sheets are available for reagents and materials. Review them for hazards prior to usage.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Sulfates and chlorides can be found in filter plugging deposits and fuel injector deposits. The acceptability for use of the fuel components and the finished fuels depends on the sulfate and chloride content.5.2 Existent and potential inorganic sulfate and total chloride content, as measured by this test method, can be used as one measure of the acceptability of gasoline components for automotive spark-ignition engine fuel use.1.1 This test method covers a direct injection ion chromatographic procedure for determining existent and potential inorganic sulfate and total inorganic chloride content in hydrous and anhydrous denatured ethanol and butanol to be used in motor fuel applications. It is intended for the analysis of ethanol and butanol samples containing between 1.0 mg/kg to 20 mg/kg of existent or potential inorganic sulfate and 1.0 mg/kg to 50 mg/kg of inorganic chloride.NOTE 1: Tertiary butanol is not included in this test method. 1-butanol, 2-butanol, and isobutanol are included in the testing and research report for this test method.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Material Safety Data Sheets are available for reagents and materials. Review them for hazards prior to usage.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Sampling inspection permits the estimation of the overall quality of a group of product articles through the inspection of a relatively small number of product items drawn from the group. 4.2 The selection of a sampling plan provides purchasers and sellers a means of identifying the minimum quality levels that are considered to be satisfactory. 4.3 Because sampling plans will only yield estimates of the quality of a product, the results of the inspection are subject to error. Through the use of sampling plans, the risk of error is known and controlled. 1.1 This guide gives sampling plans that are intended for use in the inspection of metallic and inorganic coatings for conformance to ASTM standard specifications. 1.2 The plans in this guide, except as noted, have been selected from some of the single sampling plans of MIL-STD-105D. The specific plans selected are identified in Tables 1-3 of this guide. The plan of Table 4, which is used for destructive testing, is not from the Military Standard. This standard does not contain the Military Standard's requirement for tightened inspection when the quality history of a supplier is unsatisfactory. 1.3 The plans are based on inspection by attributes, that is, an article of product is inspected and is classified as either conforming to a requirement placed on it, or as nonconforming. Sampling plans based on inspection by variables are given in Guide B762. Variables plans are applicable when a test yields a numerical value for a characteristic, when the specification imposes a numerical limit on the characteristic, and when certain statistical criteria are met. These are explained in Guide B762. 1.4 The plans in this guide are intended to be generally suitable. There may be instances in which tighter or looser plans or ones that are more discriminating are desired. Additional plans that may serve these needs are given in Guide B697. Also, Guide B697 describes the nature of attribute sampling plans and the several factors that must be considered in the selection of a sampling plan. More information and an even greater selection of plans are given in MIL-STD-105D, MIL-STD-414, ANSI/ASQC Z1.9-1979, Refs (1-7)2, and in Guide B697. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is useful for detecting and determining organic and inorganic carbon impurities in water from a variety of sources including industrial water, drinking water, and waste water.5.2 Measurement of these impurities is of vital importance to the operation of various industries such as power, pharmaceutical, semiconductor, drinking water treatment, and waste treatment. Semiconductor and power applications require measurement of very low organic carbon levels (TOC < 1 μg/L). Applications in pharmaceutical industries range from USP purified water (TOC < 500 μg/L) to cleaning applications (500 μg/L < TOC < 50 000 μg/L). Drinking waters range from <100 μg/L to 25 000 μg/L and higher. Some of these applications may include waters with substantial ionic impurities as well as organic matter.5.3 Measurement of inorganic carbon as well as total organic carbon is highly important to some applications, such as in the power industry.5.4 Continuous monitoring and observation of trends in these measurements are of interest in indicating the need for equipment adjustment or correction of water purification procedures.5.5 Refer to the Bibliography section for additional information regarding the significance of this test method.1.1 This test method covers the on-line determination of total carbon (TC), inorganic carbon (IC), and total organic carbon (TOC) in water in the range from 0.5 μg/L to 50 000 μg/L of carbon. Higher carbon levels may be determined by suitable on-line dilution. This test method utilizes ultraviolet-persulfate oxidation of organic carbon coupled with a CO2 selective membrane to recover the CO2 into deionized water. The change in conductivity of the deionized water is measured and related to carbon concentration in the oxidized sample using calibration data. Inorganic carbon is determined in a similar manner without the requirement for oxidation. In both cases, the sample is acidified to facilitate CO2 recovery through the membrane. The relationship between the conductivity measurement and carbon concentration can be described by a set of chemometric equations for the chemical equilibrium of CO2, HCO3−, H+, and OH−, and the relationship between the ionic concentrations and the conductivity. The chemometric model includes the temperature dependence of the equilibrium constants and the specific conductances resulting in linear response of the method over the stated range of TOC. See Test Method D4519 for a discussion of the measurement of CO2 by conductivity.1.2 This test method has the advantage of a very high sensitivity detector that allows very low detection levels on relatively small volumes of sample. Also, the use of two measurement channels allows determination of IC in the sample independently of organic carbon. Isolation of the conductivity detector from the sample by the CO2 selective membrane results in a very stable calibration with minimal interferences.1.3 This test method was used successfully with reagent water spiked with sodium carbonate and various organic compounds. This test method is effective with both deionized water samples and samples of high ionic strength. It is the user's responsibility to ensure the validity of this test method for waters of untested matrices.1.4 This test method is applicable only to carbonaceous matter in the sample that can be introduced into the reaction zone. The inlet system generally limits the maximum size of particles that can be introduced. Filtration may also be used to remove particles, however, this may result in removal of organic carbon if the particles contain organic carbon.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers inorganic fiber-reinforced organic felt, and inorganic fiber-based asphaltic and nonasphaltic felt underlayments for use as underlayment with steep-slope roofing products. The intent of this specification is to provide criteria for producing and evaluating underlayments with a significantly reduced tendency to wrinkle before or after the installation of steep roofing products. Materials shall be sampled and tested suitably to examine their conformance with performance requirements such as tear strength, pliability, behavior on heating, liquid water transmission, dimensional stability at low to high humidity conditions, and elongation.1.1 This specification covers (1) inorganic fiber-reinforced organic felt underlayment, and (2) inorganic fiber-based felt for use as underlayment with steep-slope roofing products. The intent of this specification is to provide criteria for producing and evaluating underlayments with a significantly reduced tendency to wrinkle before or after the installation of steep roofing products.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 The following safety hazards caveat pertains only to the test method portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory requirements prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Sulfates and chlorides may be found in filter plugging deposits and fuel injector deposits. The acceptability for use of the fuel components and the finished fuels depends on the sulfate and chloride content.5.2 Existent and potential inorganic sulfate and total chloride content, as measured by this test method, can be used as one measure of the acceptability of gasoline components for automotive spark-ignition engine fuel use.1.1 This test method covers an ion chromatographic procedure for the determination of the existent inorganic and potential sulfate and total inorganic chloride content in hydrous and anhydrous denatured ethanol to be used in motor fuel applications. It is intended for the analysis of ethanol samples containing between 0.55 mg/kg and 20 mg/kg of existent inorganic sulfate, 4.0 mg/kg to 20 mg/kg of potential inorganic sulfate, and 0.75 mg/kg to 50 mg/kg of total inorganic chloride.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Material Safety Data Sheets are available for reagents and materials. Review them for hazards prior to usage1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 If a coating is to fulfill its function of protecting or imparting unique properties to the surface of a substrate, it must adhere to the substrate for the expected service life. Because surface preparation (or lack of it) has a drastic effect on adhesion of coatings, a test method for evaluating adhesion to different surface treatments or of different coatings to the same treatment is of considerable use to the industry.4.2 The limitations of all adhesion methods, and the specific limitation of this test method to lower levels of adhesion (see 1.3) should be recognized before using it. These test methods are mechanized adaptations of Test Methods D3359; therefore, the intra- and interlaboratory precision of these test methods are similar to Test Methods D3359 and to other widely-accepted tests for coated substrates, for example, Test Method D2370, but this is partly the result of it being insensitive to all but large differences in adhesion. The pass-fail scale of 0 to 5 for Method B1 and B2 was selected deliberately to avoid a false impression of being sensitive.1.1 These test methods describe procedures for assessing the adhesion of metallic and inorganic coatings and other thin films to metallic and nonmetallic substrates. Assessment is made by applying pressure-sensitive tape to a coated surface and then utilizing a mechanical device to remove the tape at a regulated, uniform rate and constant angle while simultaneously recording the removal force.1.2 Four methods are described. Methods A1 and A2 are intended primarily for use on parts. Methods B1 and B2 are intended primarily for use in laboratory evaluations. Methods B1 and B2 are not recommended for testing coatings and films on polymer substrates.1.3 These test methods may be used to establish whether the adhesion of a coating to a substrate is within a required range (between a quantified low and a quantified high level). Determination of actual adhesive forces requires more sophisticated methods of measurement. In multilayer systems adhesion failure may occur between intermediate coating layers so that the adhesion of the total coating system to the substrate may not necessarily be determined.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Most coating specifications specify the thickness of the coating because coating thickness is often an important factor in the performance of the coating in service.3.2 The methods included in this guide are suitable for acceptance testing and are to be found in ASTM standards.3.3 Each method has its own limitations with respect to the kind of coating and its thickness.1.1 This guide covers the methods for measuring the thickness of many metallic and inorganic coatings including electrodeposited, mechanically deposited, vacuum deposited, anodic oxide, and chemical conversion coatings.1.2 This guide is limited to tests considered in ASTM standards and does not cover certain tests that are employed for special applications.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers corrosion-resistant coating consisting of an inorganic aluminum particle-filled basecoat and an organic or inorganic topcoat. The basecoat is a water-dilutable slurry containing aluminum particles dispersed in a liquid binder of chromate/phosphate compounds. The organic topcoats consist of polymer resins and dispersed pigments. The inorganic topcoats consist of ceramic oxide pigments dispersed in a liquid binder of chromate/phosphate compounds. These coatings are applied by conventional dip/spin, dip/drain, or spray methods. The coating systems defined by this specification can be applied to ferrous alloy steels, aluminum, and ferritic and austenitic stainless steels. The inorganic aluminum particle-filled basecoat and the subsequent topcoats are classified into three groups, with subsequent subgroups. Materials shall be tested and the individual grades shall conform to specified values of appearance, adhesion, corrosion, thread-fit, weathering, coating thickness, and humidity.1.1 This specification covers the basic requirements for a corrosion-resistant coating consisting of an inorganic aluminum particle-filled basecoat and an organic or inorganic topcoat, depending on the specific requirements.1.2 The coating may be specified with basecoat only, or with the top coated with compatible organic polymer or inorganic topcoats, depending on the specific requirements.1.3 The basecoat is a water-dilutable slurry containing aluminum particles dispersed in a liquid binder of chromate/phosphate compounds.1.4 The organic topcoats consist of polymer resins and dispersed pigments and are for service where temperatures do not exceed 230 °C (450 °F).1.5 The inorganic topcoats consist of ceramic oxide pigments dispersed in a liquid binder of chromate/phosphate compounds and are for service where temperatures do not exceed 645 °C (1200 °F).1.6 These coatings are applied by conventional dip/spin, dip/drain, or spray methods.1.7 The coating process does not normally induce hydrogen embrittlement, provided that the parts to be coated have not been subjected to an acid cleaner or pretreatment (see Note 1).NOTE 1: Although this coating material contains water, it has a relatively low susceptibility to inducing hydrogen embrittlement in steel parts of tensile strengths equal to or greater than 1000 MPa (approximately RC31). Normal precautions for preparing, descaling, and cleaning steels of these tensile strengths must be observed. An initial stress relief treatment should be considered prior to any chemical treatment or cleaning operation. Acids or other treatments that evolve hydrogen should be avoided. Mechanical cleaning methods may be considered. Some steels are more susceptible to hydrogen embrittlement than others and may also require hydrogen embrittlement relief baking after cleaning but before coating. Since no process can completely guarantee freedom from embrittlement, careful consideration must be given to the entire coating process and the specific steel alloy employed.1.8 The coating systems defined by this specification can be applied to ferrous alloy steels, aluminum, and ferritic and austenitic stainless steels.1.9 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.10 The following safety hazards caveat pertains only to the test methods portion, Section 6, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
35 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页