微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
ASTM D6765-13e1 Standard Practice for Live Staking (Withdrawn 2022) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

4.1 Live staking is a soil bioengineering technique used to provide erosion and sedimentation control after plants have become fully established by increasing infiltration, slowing or redirecting runoff, and trapping seed and sediments. A successful live staking application provides mechanical surface slope stabilization, aesthetics, water quality and habitat enhancement. The ability of live staking to function properly depends on the quality and correctness of the materials utilized, the means and methods of installation, and proper consideration of site characteristics. It is imperative that the live staking develops root and top growth.1.1 This practice covers the material, preparation and installation work required for live stake construction.1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard.1.3 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace standard of care by which adequacy of a given professional service must be judged, nor should this document be applied without considerations of a project's many unique aspects. The word “standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.4 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is intended for determining the heat attenuation factor (HAF) of a shield material and the effective heat attenuation factor (EHAF) at the location of the worker. This can be obtained by measuring the reduction of the arc incident energy levels caused by a shield attached on a live line tool (hot stick) or on a racking rod and designed for protection for workers exposed to electric arcs. The shield mechanical strength (SMS) can be obtained from visual observations of the high speed video recordings of each shot during HAF tests.5.1.1 Because of the variability of the arc exposure, different heat transmission values and pressure may result for individual sensors. The results of each sensor are evaluated in accordance with Section 12.5.2 This test method maintains the shield and the heat sensors in a static, vertical position and does not involve movement except that resulting from the exposure.5.3 This test method specifies a standard set of exposure conditions. Different exposure conditions may produce different results.NOTE 1: In addition to the standard set of exposure conditions, other conditions representative of the expected hazard may be used and shall be reported should this data be cited.1.1 This test method is used to determine the heat attenuation factor (HAF), the effective heat attenuation factor (EHAF), and the shields mechanical strength (SMS) of a shield attached on live line tools or racking rods intended for protection of workers exposed to electric arcs.1.2 The materials used in this test method of worker protection are in the form of a shield attached on live line tools or on the racking rods.1.3 The protective shield described in this test method shall be transparent and shall be easily attached and removed from live line tools or from racking rods.1.4 The protective shield described in this test method has 24-in. (0.61-m) diameter and can be used for most applications, however for special cases, the shield can have different sizes to suit the protective requirements of the application.1.5 This standard shall be used to measure and describe the properties of materials, products, or assemblies in response to incident energies (thermal-convective, and radiant and pressure wave) generated by an electric arc under controlled laboratory conditions and does not purport to predict damage from light, resultant pressure impact other than the pressure and thermal aspects measured.1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 This standard shall not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire assessment, which takes into account all of the factors, which are pertinent to an assessment of the fire hazard of a particular end use.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.For specific precautions, see Section 7.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Compliance with this guide should confirm known and acceptable quality of hand-held insulating live-line tools manufactured using fiberglass meeting Specification F711. The guidance herein is to be considered as a minimum requirement.3.2 The user of this type of protective equipment should be knowledgeable of and instructed in the correct and safe inspection and use of this equipment.1.1 This guide provides recommendations for in-service inspection, maintenance, and electrical testing of hand-held insulating live-line tools.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

5.1 This practice allows for compositional analysis of the gases in equilibrium with crude oil, condensate, and liquid petroleum products at a 4:1 vapor/liquid ratio at ambient temperature for analysis using typical instrumentation (RGA) already available in typical refinery laboratories. These highly volatile components can result in vapor pressure conditions above atmospheric pressure, so this mechanically simple system is easily adaptable to day-to-day application at low cost/effort using existing analytical equipment.5.2 This practice allows for compositional analysis and day-to-day tracking or trending of the light hydrocarbons in crude oil for the purpose of identifying unusual blending of NGL, LPG, butane etc. into individual crude oil batch receipts.5.3 This practice allows identification of gases: including: CO, CO2, H2, H2S, N2, O2, CH4, C2H6, C3H8, etc. that can contribute to vapor pressure by Test Method D6377, but are not identified using Test Method D8003 (see Note 1). These components can originate from production or can be the result of the use of pad gas and may not be native to the original product. Significant difference in Test Method D6377 vapor pressure measurements at low V/L (for example, 0.1:1) versus high V/L (for example, 4:1) indicate the contribution of high vapor pressure gases such as those in 5.2.NOTE 1: Test Method D8003 does identify: CH4, C2H6, and C3H8. Test Method D8003 does not identify: CO, CO2, H2, H2S, N2, and O2.5.4 Nitrogen and combustion gases (mostly nitrogen and CO2 with minor concentrations of air) at positive pressures up to 2500 mm water column (nominal 4 psig) is required by International Marine Organization (IMO) Marine Pollution (MARPOL) and Safety of Life at Sea (SOLAS) regulations for the marine transport of crude oil. Analysis of the equilibrium vapor may be required to determine the contribution of inert gases to the total vapor pressure of the crude oil on receipt at the discharge port or refinery.1.1 This practice covers the preparation of an equilibrium gas sample of live crude oil, condensate, or liquid petroleum products, using a Practice D8009 manual piston cylinder (MPC) as a vapor tight expansion chamber to generate an equilibrium vapor/liquid pair at a known temperature and vapor/liquid ratio (V/L). Inert gas such as helium or argon is injected to the equilibrium vapor space of the MPC to provide an equilibrium vapor sample sufficiently above atmospheric pressure for subsequent analysis using a standard refinery gas analyzer (RGA) such as described in Test Method D7833. Other gas analysis methods may be used provided they meet the minimum performance criteria stated in 7.4.1.1.2 This practice is suitable for UN Class 3 Liquid samples having vapor pressures between 0 kPa and 300 kPa at 50.0 °C, and 0.1:1 to 4:1 vapor/liquid ratio, spanning the nominal range near bubble point (Test Method D6377 VPCr,0.1) to Test Methods D323 (RVP), D4953, and D5191 (V/L=4). The temperature may vary over a wide range, provided that the cylinder is maintained at isothermal and isobaric conditions to prevent condensation of equilibrium vapor upon cooling either in the cylinder or in the injection system of the Refinery Gas Analyzer (RGA, Test Method D7833). The method is best suited for preparation of an equilibrium gas/liquid pair near ambient conditions, typical of routine daily operations in a typical refinery quality assurance or marine terminal laboratory, to routinely monitor the light ends content of crude oil receipts.1.3 This practice is suitable to prepare an equilibrium liquid/vapor sample pair in a sealed sampling system (no light ends loss from either phase). The equilibrium gas phase is suitable for subsequent gas analysis of both hydrocarbon and fixed/inert gases in the sample, including: hydrogen, oxygen, nitrogen, carbon dioxide, carbon monoxide, hydrogen sulfide, C1 to C7 hydrocarbons at levels consistent with the Test Method D7833 method used. The equilibrium liquid phase can be subsequently analyzed by Test Method D8003 to obtain paired analytical results on both the equilibrium liquid and vapor pair with a sealed sample system.1.4 Addition of the diluent gas provides a positive pressure sample to allow the use of a typical RGA-type gas injection system that operates only slightly above barometric pressure. The preferred diluent gas shall be the same as the carrier gas used in the RGA (typically helium or argon). Choice of diluent or carrier gas may affect the ability to detect some inert gases (especially O2 or H2) in some RGA configurations conforming to Test Method D7833.1.5 The VLE gas generation and subsequent RGA output is used as a screening method to identify gas components that can be present in the crude oil affecting the total vapor pressure. The RGA output only represents the equilibrium vapor components present and relative to one another. Due to dilution of the VLE gas with inert gas, the RGA output does not purport to accurately provide the actual vapor composition at VLE conditions and is definitely not representative of the composition of the whole sample.1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D6599-00(2014)e2 Standard Practice for Construction of Live Fascines on Slopes (Withdrawn 2023) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

4.1 Live fascines are used to provide erosion and sedimentation control by increasing infiltration, slowing or redirecting runoff, and trapping seed and sediments. The method provides shallow mechanical surface slope stabilization, and provides enhanced values through vegetative growth and additional shallow soil reinforcement through the development of the roots. The ability of live fascines to function properly depends on the quality and choice of the materials used to construct the live fascine, the means and methods of fabrication and installation, and proper consideration of site characteristics and time of year. For the live fascine to function completely, it is important that the live fascine develops suitable growth.1.1 This practice covers the material, fabrication and installation work to construct live fascines.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgement. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without considerations of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.4 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers the technical characteristics of and test methods for insulating rods and foam-filled tubes made from fiberglass-reinforced plastic (FRP) that are intended for use in live line tools. This specification does not include insulating foam-filled tubes and rods made from other materials, as well as fittings and attachments to the rods and foam-filled tubes for complete tools are not covered in this specification. The rods and tubes shall undergo four types of tests, namely: design test, sample test, routine test, and acceptance test. Tests shall be conducted to evaluate the following mechanical and electrical properties: wicking, bending deflection, horizontal crush, tension, shear, compression, modulus of elasticity, and mechanical aging; and dielectric current and leakage.1.1 This specification covers insulating rods and foam-filled tubes made from fiberglass-reinforced plastic (FRP) that are intended for use in live line tools.1.2 This specification does not include insulating foam-filled tubes and rods from other materials. Specifications for fittings and attachments to rods and foam-filled tubes for complete tools are not covered in this specification.1.3 This specification establishes the technical characteristics that the tubes and rods must satisfy.1.4 The following safety hazards caveat pertains only to the test method portion, Section 12, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice addresses performance characteristics for vegetative (green) roof systems with respect to the dead load and transient water load of the entire vegetative (green) roof system.5.2 Determining these performance characteristics of vegetative (green) roof systems provides information to facilitate the assessment of related engineering aspects of the facility. Such aspects may include structural design requirements, mechanical engineering and thermal design requirements, and fire and life safety requirements.5.3 Determining these performance characteristics of vegetative (green) roof systems provides information to facilitate assessment of the performance of one vegetative (green) roof system relative to another.1.1 This practice covers a standardized procedure for predicting the system weight of a vegetative (green) roof system.1.2 The practice addresses the loads associated with vegetative (green) roof systems. Components that are typically encountered in vegetative (green) roof systems include: membranes, non-absorptive plastic sheet components, metallic layers, fabrics, geocomposite drain layers, synthetic reinforcing layers, cover/recover boards, insulation materials, growth media, granular drainage media, and plant materials.1.3 This practice also addresses the weight of the vegetative (green) roof system under two conditions: (1) weight under drained conditions after new water additions by rainfall or irrigation have ceased (this includes the weight of retained water and captured water), and (2) weight when rainfall or irrigation is actively occurring and the drain layer is completely filled with water. The first condition is considered the dead load of the vegetative (green) roof system. The difference in weight between the first and second conditions, approximated by the weight of transient water in the drain layer, is considered a live load.1.4 This practice does not address point or line loads associated with architectural elements that are not essential components of a particular vegetative (green) roof system. These architectural elements may include pavement, walls, and masonry, and so forth.1.5 This practice does not address live loads associated with construction activities.1.6 This practice does not address loads associated with snow or wind.1.7 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method determines methane (nC1) to hexane (nC6), cut point carbon fraction intervals to nC24 and recovery (nC24+) of live crude oils and condensates without depressurizing, thereby avoiding the loss of highly volatile components and maintaining sample integrity. This test method provides a highly resolved light end profile which can aid in determining and improving appropriate safety measures and product custody transport procedures. Decisions in regards to marketing, scheduling, and processing of crude oils may rely on light end compositional results.5.2 Equation of state calculations can be applied to variables provided by this method to allow for additional sample characterization.1.1 This test method covers the determination of light hydrocarbons and cut point intervals by gas chromatography in live crude oils and condensates with VPCR4 (see Note 1) up to 500 kPa at 37.8 °C.NOTE 1: As described in Test Method D6377.1.2 Methane (C1) to hexane (nC6) and benzene are speciated and quantitated. Samples containing mass fractions of up to 0.5 % methane, 2.0 % ethane, 10 % propane, or 15 % isobutane may be analyzed. A mass fraction with a lower limit of 0.001 % exists for these compounds.1.3 This test method may be used for the determination of cut point carbon fraction intervals (see 3.2.1) of live crude oils and condensates from initial boiling point (IBP) to 391 °C (nC24). The nC24 plus fraction is reported.1.4 Dead oils or condensates sampled in accordance with 12.1 may also be analyzed.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5.1 Exception—Where there is no direct SI equivalent such as tubing size.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification applies to the clampstick type live line tools to ensure manufacturing processes and materials are compatible and no deterioration of components occur during the assembly process. Neither the FRP tube and rod, foam filling, or the bonding adhesive shall deteriorate during the prescribed mechanical and electrical test. The external surface of the FRP shall be uniform, symmetrical, and free of abrasions, scratches, blemishes, and surface defects. The mechanical design test and electrical design test procedures are presented in details.1.1 This specification applies to the Clampstick type live line tools to ensure manufacturing processes and materials are compatible and no deterioration of components occur during the assembly process.1.2 This specification establishes the technical characteristics for clampsticks.1.3 This specification applies to clampsticks both hollow and foam-filled.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 The following safety hazards caveat pertains only to the test portions of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicable of regulatory limitations prior to use.1.6 The use, maintenance, and in-service testing of this equipment is beyond the scope of this specification.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers mechanical and electrical testing and acceptance criteria for live line and measuring telescoping tools. It shall be used for design, routine, and acceptance testing. It does not cover multiple section or extendable section clampsticks. Mechanical test methods shall include horizontal bending deflection test, free fall impact test, tension test, and vertical deflection test. Measuring device tool need not to comply with mechanical strength requirements of this specification. Electrical test methods shall include electrical design test and electrical withstand test.1.1 This specification covers mechanical and electrical testing and acceptance criteria for telescoping live line tools.1.1.1 A tool designed only for use as a measuring device need not comply with mechanical strength requirements of this specification.1.2 The use and maintenance of this equipment is beyond the scope of this specification.1.3 This specification does not cover multiple section or extendable section clampsticks.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 The following safety hazards caveat pertains to Section 9 only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
C227.5-08 Three-Phase Live-Front Pad-Mounted Distribution Transformers 现行 发布日期 :  1970-01-01 实施日期 : 

定价: 910元 / 折扣价: 774

在线阅读 收 藏
14 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页