微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 190元 / 折扣价: 162 加购物车

在线阅读 收 藏

定价: 114元 / 折扣价: 97 加购物车

在线阅读 收 藏

定价: 110元 / 折扣价: 94

在线阅读 收 藏

定价: 182元 / 折扣价: 155

在线阅读 收 藏

定价: 182元 / 折扣价: 155

在线阅读 收 藏

定价: 605元 / 折扣价: 515 加购物车

在线阅读 收 藏

5.1 This standard is intended for use by researchers and designers to assess the stability of articulating concrete block (ACB) revetment systems in order to achieve stable hydraulic performance under the erosive force of flowing water.5.2 An articulating concrete block system is comprised of a matrix of individual concrete blocks placed together to form an erosion-resistant revetment with specific hydraulic performance characteristics. The system includes a filter layer compatible with the subsoil which allows infiltration and exfiltration to occur while providing particle retention. The filter layer may be comprised of a geotextile, properly graded granular media, or both. The blocks within the matrix shall be dense and durable, and the matrix shall be flexible and porous.5.3 Articulating concrete block systems are used to provide erosion protection to underlying soil materials from the forces of flowing water. The term “articulating,” as used in this standard, implies the ability of individual blocks of the system to conform to changes in the subgrade while remaining interconnected by virtue of block interlock or additional system components such as cables, ropes, geotextiles, geogrids, or other connecting devices, or combinations thereof.5.4 The definition of articulating concrete block systems does not distinguish between interlocking and non-interlocking block geometries, between cable-tied and non-cable-tied systems, between vegetated and non-vegetated systems or between methods of manufacturing or placement. This standard does not specify size restrictions for individual block units. Block systems are available in either open-cell or closed-cell varieties.1.1 The purpose of this guide is to provide recommended guidelines for the analysis and interpretation of hydraulic test data for articulating concrete block (ACB) revetment systems under steep slope, high velocity flow conditions in a rectangular open channel. Data from tests performed under controlled laboratory conditions are used to quantify stability performance of ACB systems under hydraulic loading. This guide is intended to be used in conjunction with Test Method D7277.1.2 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which adequacy of a given professional service must be judged, nor can this document be applied without considerations of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.3 The values stated in inch-pound units are to be regarded as standard. The user of the standard is responsible for any and all conversions to other systems of units. Reporting of test results in units other than inch-pound shall not be regarded as nonconformance with this test method.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 An articulating concrete block revetment system is comprised of a matrix of individual concrete blocks placed together to form an erosion-resistant revetment with specific hydraulic performance characteristics. The system includes a filter layer compatible with the subsoil which allows infiltration and exfiltration to occur while providing particle retention. The filter layer may be comprised of a geotextile, properly graded granular media, or both. The concrete blocks within the matrix shall be dense and durable, and the matrix shall be flexible and porous.5.2 ACB revetment system are used to provide erosion protection to underlying soil materials from the forces of flowing water. The term “articulating,” as used in this standard, implies the ability of individual concrete blocks of the system to conform to changes in subgrade while remaining interconnected by virtue of geometric interlock, cables, ropes, geotextiles, geogrids, or combination thereof.5.3 The definition of ACB revetment system does not distinguish between interlocking and non-interlocking block geometries, between cable-tied and non-cable-tied systems, between vegetated and non-vegetated systems or between methods of manufacturing or placement. Furthermore, the definition does not restrict or limit the block size, shape, strength, or longevity; however, guidelines and recommendations regarding these factors are incorporated into this standard. Blocks are available in either open-cell or closed-cell configurations.1.1 The purpose of this test method is to provide specifications for the hydraulic testing of full-scale articulating concrete block (ACB) revetment systems under controlled laboratory conditions for purposes of identifying stability performance in steep slope, high-velocity flows. The testing protocols, including system installation, test procedures, measurement techniques, analysis techniques, and reporting requirements are described in this test method.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. Reporting or use of units other than inch-pound shall not be considered non-conformance as long as the selected parameters described regarding flume construction by the inch-pound system used in this method are met as a minimum.1.2.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The rationalized slug unit is not given, unless dynamic (F = ma) calculations are involved.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.3.1 The procedures used to specify how data are collected, recorded and calculated in this Guide are regarded as the industry standard. In addition they are representative of the significant digits that generally be retained. The procedures used do not consider material variation, purpose of obtaining the data, special purpose studies or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors and Practice D3740 provides a means of evaluating some of these factors.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended to be used in specifications where porosity of cellular plastics has a direct bearing on their end use. For example, for thermal insulation applications, a high percentage of closed cells is necessary to prevent escape of gases and to promote low thermal conductivity. In flotation applications, high closed-cell content generally reduces water absorption.5.2 Before proceeding with this test method, reference shall be made to the specification of the material being tested. Any test specimen preparation, conditioning, or dimensions, or both, and testing parameters covered in the materials specification shall take precedence over those mentioned in this test method. If there are no material specifications, then the default conditions apply.1.1 This test method covers cellular plastics, which are composed of membranes or walls of polymer separating small cavities or cells. These cells may be interconnecting (open cell), non-connecting (closed cell), or any combination of these types. This test method determines numerical values for open cells. It is a porosity determination, measuring the accessible cellular volume of a material. The remaining volume is that occupied by closed cells and cell walls. Since any conveniently sized specimen is typically obtained by some cutting operation, a fraction of the closed cells will be opened by specimen preparation and will be included as open cells, (see Note 2).1.2 This test method provides good accuracy on predominantly highly open-celled materials. By not accounting for closed cells that were opened during specimen preparation, the accuracy decreases as the closed cell content increases and as the cell size increases.1.3 The values as stated in SI units are to be regarded as the standard. The values in parentheses are given for reference only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This test method and ISO 4590 use the same basic principles but are significantly different in experimental detail.NOTE 2: Two procedures for correcting for cells opened during specimen preparation are described in Appendix X1.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 An OP/FT-IR monitor can, in principle, measure the concentrations of all IR-active gases and vapors in the atmosphere. Detailed descriptions of OP/FT-IR systems and the fundamental aspects of their operation are given in Practice E1685 and the FT-IR Open-Path Monitoring Guidance Document. A method for processing OP/FT-IR data to obtain the concentrations of gases over a long, open path is given in Compendium Method TO-16. Applications of OP/FT-IR systems include monitoring for gases and vapors in ambient air, along the perimeter of an industrial facility, at hazardous waste sites and landfills, in response to accidental chemical spills or releases, and in workplace environments.1.1 This practice covers procedures for using active open-path Fourier transform infrared (OP/FT-IR) monitors to measure the concentrations of gases and vapors in air. Procedures for choosing the instrumental parameters, initially operating the instrument, addressing logistical concerns, making ancillary measurements, selecting the monitoring path, acquiring data, analyzing the data, and performing quality control on the data are given. Because the logistics and data quality objectives of each OP/FT-IR monitoring program will be unique, standardized procedures for measuring the concentrations of specific gases are not explicitly set forth in this practice. Instead, general procedures that are applicable to all IR-active gases and vapors are described. These procedures can be used to develop standard operating procedures for specific OP/FT-IR monitoring applications.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This practice does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this practice to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Refer to Guide D8509.1.1 This test method determines the open-hole compressive strength of multidirectional polymer matrix composite laminates reinforced by high-modulus fibers. The composite material forms are limited to continuous-fiber or discontinuous-fiber (tape or fabric, or both) reinforced composites in which the laminate is balanced and symmetric with respect to the test direction. The range of acceptable test laminates and thicknesses are described in 8.2.1.1.2 Several related ASTM standards reference the procedures and apparatus described within this test method. In particular, the support fixture described in 7.2 is used by several other standards to stabilize compression-loaded test specimens. These include Practice D6742/D6742M, which covers filled-hole compression testing; Practice D7615/D7615M, which covers open-hole fatigue testing; and Practice D8066/D8066M, which covers unnotched laminate compression testing.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method evaluates the edge binding assembly used to determine how well the two external elements along the mattress edge, essentially, the edge tape and FR sewing thread, behave after exposure to an open flame and a hot air oven. These data can be used to confirm that either the mattress or foundation, or both will pass when tested using 16 CFR1633. Evaluation of raw material components is a vital and ongoing part of any manufacturing operation, especially when each item can contribute to the technical performance of the final product.5.2 Inherently flame resistant (FR) sewing thread is used as shown in Fig. 1, Fig. 2, and Fig. 3 to secure and encapsulate the following elements:FIG. 1 Mattress Edge Bound Sample – ProfileFIG. 2 Before Trimming – ProfileFIG. 3 After Trimming – Profile5.2.1 Test method measures the behavior of mattress edge binding tape that joins and closes the assembly of either the mattress or the box spring foundation, or both, and sewing thread during and after exposure to an open flame ignition source.5.2.2 Test method can be used to determine if the encapsulated multilayer assembly of mattress cover, fire barrier, and foam (when used) work together to prevent entry of open flame to mattress interior.5.3 Flame resistance of the components used to close the perimeter of a mattress is an important factor in limiting the potential of a bedding fire by preventing the chance for seam failure.5.4 Data which show a correlation of behavior for both the sewing thread and edge binding tape, when tested as a subassembly according to this test method, and also when tested using a full scale composite mattress burn test, such as 16 CFR 1633, can provide the manufacturer with important information. These data can be valuable when selecting components to be used in the manufacture of its products which are designed to use mattress edge binding and sewing thread.5.5 The level of performance required for these components is (1) that they do not support the afterflame, and (2) that these components demonstrate post flame exposure characteristics which contribute to retaining the structural integrity of the subassembly.5.6 In case of a dispute arising from differences in reported results when using this test method for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens which are as homogeneous as possible and which are from a lot of material of the type in question. The test specimens should then be sent to each laboratory for testing. The average results from the two laboratories should be compared using Student's t-test and an acceptable probability level chosen by the two parties before testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results with consideration of known bias.1.1 This test method measures the flammability characteristics of mattress edge bindings and sewing threads during and after exposure to an open flame ignition source.1.1.1 This test method is used to evaluate these components either independently or in combination for use in mattresses designed with a fire barrier fabric.1.1.1.1 The test method is used to evaluate mattress edge binding and sewing thread when the design requires the use of these components.1.1.2 This test method can be used as a screening test method to determine how sewing thread and mattress edge binding component combinations will perform.1.2 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.3 Fire testing of products and materials is inherently hazardous, and adequate safeguards for personnel and property shall be employed in conducting these tests.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Providing speech privacy in open-plan spaces depends upon many factors, the most significant of which are the following: (1) the shadow zone of part-height space dividers and the diffraction of sound from the edges of space dividers; (2) the primary sound reflective properties of the ceiling system; (3) the level of masking sound present in the space; and (4) the distance between speaker and listener. Guide E1374 provides additional detail on the factors contributing to speech privacy in open-plan spaces.5.2 In this test method the third factor, masking sound, is eliminated and the fourth factor, the distance between speaker and listener, is standardized for all specimen types. For the measurement of ceiling systems, the first factor, the shadow zone, is also standardized for each divider height used. Experience has indicated that results obtained by this test method may not fairly represent the speech privacy that may be achievable with non-flat ceiling systems. For the measurement of furniture panels used as acoustical barriers, the second of these factors, the sound reflectance of the ceiling, is standardized. For the measurement of reflective and absorptive vertical surfaces used as wall finishings or furniture panels, the first and second factors are standardized and all paths between the speaker and listener reflecting only off of the ceiling are eliminated.5.3 This test method provides standardized techniques to assess the contribution of specific components of an open-plan space. The test method specifies an acoustical testing environment for each component type that isolates its contribution from the contribution of other components, which may in actual open-plan environments contribute significantly to the overall speech privacy.5.4 The significance of test results obtained by this test method must also be considered with regard to the attainable measurement accuracy. The attainment of speech privacy in the presence of masking sound is critically dependent upon sound level of the speech relative to the masking sound; a change as small as 2 dB in either the speech or masking sound may change the privacy from significant to insignificant. The normally accepted test accuracies for sound attenuation measurements may be inadequate to evaluate components having marginal interzone attenuation performance for open-office needs.1.1 This test method covers the measurement of the interzone attenuation for three components of open-plan spaces:1.1.1 Ceiling systems when used in conjunction with partial-height space dividers. This arrangement is commonly used in offices to achieve speech privacy between work zones in the absence of full-height partitions. This test method is applicable to any ceiling configuration, including, for example, a pattern of sound-reflective panels in an otherwise sound-absorptive ceiling. This test method generally requires use of a fixed space divider height of 1.50 m [5 ft]. In recognition of trends toward alternate divider heights in open office environments, measurements with an alternate divider height may be conducted in accordance with this standard.1.1.2 Furniture panels used as acoustical barriers in open-plan spaces to provide speech privacy or sound isolation between working positions.1.1.3 Vertical panels, including wall finishes such as sound-absorbent panels, and furniture panels or screens which may reflect sound. It may not be applicable to such items as window finishes or furniture other than panels if these differ significantly from flat wall panels.1.1.4 The combination of results from the various components of an open-plan office is beyond the scope of this standard.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 Unless otherwise qualified, all dimensions specified in this test method shall be understood to have a tolerance of ±6 mm (±1/4 in.) The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM F1361-21 Standard Test Method for Performance of Open Vat Fryers Active 发布日期 :  1970-01-01 实施日期 : 

5.1 The measured energy input rate test is used to confirm that the fryer under test is operating in accordance with its nameplate rating.5.2 Fryer temperature calibration is used to ensure that the fryer being tested is operating at the specified temperature. Temperature calibration also can be used to evaluate and calibrate the thermostat control dial.5.3 Preheat-energy consumption and time can be used by food service operators to manage their restaurants' energy demands, and to estimate the amount of time required for preheating a fryer.5.4 Idle energy and pilot energy rates can be used by food service operators to manage their energy demands.5.5 Preheat energy consumption, idle energy, and pilot energy can be used to estimate the energy consumption of an actual food service operation.5.6 Cooking-energy efficiency is a direct measurement of fryer efficiency at different loading scenarios. This data can be used by food service operators in the selection of fryers, as well as for the management of a restaurant's energy demands.5.7 Production capacity can be used as a measure of fryer capacity by food service operators to choose a fryer to match their particular food output requirements.1.1 This test method covers the evaluation of the energy consumption and cooking performance of open vat fryers. The food service operator can use this evaluation to select a fryer and understand its energy efficiency and production capacity.1.2 This test method is applicable to Types 1 (counter), 2 (drop-in), 3 (floor-mounted, portable), and 4 (floor-mounted, stationary), size A, B, and C, electric (Style A, B and C) and gas (Style D) open vat fryers as defined by Specification F1963, with nominal frying medium capacity up to 50 lb (23 kg) or a vat size less than 18 in. in width. For size C, D, E and F and large open vat fryers with a nominal frying medium capacity greater than 50 lb (23 kg), or a vat size of 18 in. in width or greater, refer to Test Method F2144.1.3 The fryer can be evaluated with respect to the following (where applicable):1.3.1 Energy input rate (10.2),1.3.2 Preheat energy and time (10.4),1.3.3 Idle energy rate (10.5),1.3.4 Pilot energy rate (10.6),1.3.5 Cooking energy rate and efficiency (10.8), and1.3.6 Production capacity and frying medium temperature recovery time (10.8).1.4 This test method is not intended to answer all performance criteria in the evaluation and selection of a fryer, such as the significance of a high energy input design on maintenance of temperature within the cooking zone of the fryer.1.5 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
89 条记录,每页 15 条,当前第 1 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页