微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
ASTM F1699-96(2016) Standard Classification for Passive Fiber Optic Seals Active 发布日期 :  1970-01-01 实施日期 : 

4.1 This classification is intended to provide information on currently available commercial seals as a guide in their selection for specific applications. This classification is not intended to inhibit the innovation or development of new types of seals.1.1 This classification covers a specific category of commercially available passive seals.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The lists of components and materials are useful in enhancing the user's understanding of the technology and construction of fiber-optics cables and the development of performance standards for cables.4.2 This guide is intended for use by all parties involved with fiber optics: materials suppliers, cable manufacturers, and end-users.1.1 This guide is intended to provide a list of materials commonly used in components that provide insulation, jacketing and strength in fiber-optic cables. Where these materials are covered by ASTM standards, an appropriate reference is made. Due to changing technology, not all materials being used are necessarily listed here.1.2 This guide does not include materials used in components for optical purposes (optical fiber and its coating) or external metallic armoring (such as for a barrier to rodents).1.3 This guide offers two general lists of materials:1.3.1 A subdivision of fiber-optic cable construction into components that are used for insulation, jacketing, or strength, with a generic material classification for specific applications in each component (see Section 5), and1.3.2 An alphabetical list of the generic material classifications, showing ASTM standards where they exist (see Table 1).1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the requirements for pressure and differential pressure transducers for general applications. Pressure transducers typically consist of a sensing element that is in contact with the process medium and a transduction element that modifies the signal from the sensing element to produce an electrical or optical output. Some parts of the transducer may be hermetically sealed if those parts are sensitive to and may be exposed to moisture. Pressure connections must be threaded with appropriate fittings to connect the transducer to standard pipe fittings or to other appropriate leak-proof fittings. The output cable must be securely fastened to the body of the transducer. Most common sensing elements are diaphragms, bellows, capsules, Bourdon tubes, and piezoelectric crystals. The function of the sensing element is to produce a measurable response to applied pressure or vacuum. The response may be sensed directly on the element or a separate sensor may be used to detect element response. The following are the different types of electrical pressure transducers: differential transformed transducer, potentiometric transducer, strain gage transducer, variable reluctance transducer, and piezoelectric transducer. Different kinds of fiber-optic pressure transducers shall be discussed: Fabry-Perot interferometer, Bragg grating interferometer, quartz resonator, and micromachined membrane/diaphragm deflection. The following physical properties of transducers shall be determined: enclosure, transducer mounting, external configuration, standard electrical connection, pressure connections, damping, size, and weight. Different tests shall be conducted in order to determine the service life and overall performance of the transducers.1.1 This specification covers the requirements for pressure and differential pressure transducers for general applications.1.2 Special requirements for naval shipboard applications are included in Supplementary Requirements S1, S2, and S3.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard. Where information is to be specified, it shall be stated in SI units.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

This specification covers the requirements for the proximity and limit of fiber-optic position switches. This specification does not include switches that transfer an optical signal from one path to another by an external force or energy applied to the switch. The fiber-optic switches meet physical property requirements stipulated for enclosure, optoelectronic module, external configuration, and size and weight. The switches shall also adhere to minimum specified service life requiements. Other critical performance requirements shall be specified in the acquisition order as deemed important to the purchaser.1.1 This specification covers the requirements for fiber-optic position switches (proximity and limit). This specification does not include switches that transfer an optical signal from one path to another by an external force or energy applied to the switch.1.2 Special requirements for naval shipboard applications are included in the Supplement.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard. Where information is to be specified, it shall be stated in SI units.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Ionizing environments will affect the performance of optical fibers/cables being used to transmit spectroscopic information from a remote location. Determination of the type and magnitude of the spectral attenuation or interferences, or both, produced by the ionizing radiation in the fiber is necessary for evaluating the performance of an optical fiber sensor system.4.2 The results of the test can be utilized as a selection criteria for optical fibers used in optical fiber spectroscopic sensor systems.NOTE 1: The attenuation of optical fibers generally increases when exposed to ionizing radiation. This is due primarily to the trapping of radiolytic electrons and holes at defect sites in the optical materials, that is, the formation of color centers. The depopulation of these color centers by thermal and/or optical (photobleaching) processes, or both, causes recovery, usually resulting in a decrease in radiation-induced attenuation. Recovery of the attenuation after irradiation depends on many variables, including the temperature of the test sample, the composition of the sample, the spectrum and type of radiation employed, the total dose applied to the test sample, the light level used to measure the attenuation, and the operating spectrum. Under some continuous conditions, recovery is never complete.1.1 This guide covers a method for measuring the real time, in situ radiation-induced spectral attenuation of multimode, step index, silica optical fibers transmitting unpolarized light. This procedure specifically addresses steady-state ionizing radiation (that is, alpha, beta, gamma, protons, etc.) with appropriate changes in dosimetry, and shielding considerations, depending upon the irradiation source.1.2 This test procedure is not intended to test the balance of the optical and non-optical components of an optical fiber-based system, but may be modified to test other components in a continuous irradiation environment.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
5 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页