微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The MIP system provides a timely and cost effective way for delineation of many VOC plumes (for example, gasoline, benzene, toluene, solvents, trichloroethylene, tetrachloroethylene) with depth (1, 2, 4, 8, 9). MIP detector logs provide insight into the relative contaminant concentration based upon the response magnitude of detector and a determination of compound class based upon which detectors of the series respond of the bulk VOC distribution in the subsurface but do not provide analyte specificity (1, 2, 7). DP logging tools such as the MIP are often used to perform expedited site characterizations (10, 11, D5730) and develop detailed conceptual site models (E1689). The project manager should determine if the required data quality objectives (D5792) can be achieved with a MIP investigation. MIP logging is typically one part of an overall investigation program.5.2 MIP logs provide a detailed record of VOC distribution in the saturated and unsaturated formations and assist in evaluating the approximate limits of potential contaminants. A proportion of the halogenated and non-halogenated VOCs in the sorbed, aqueous, or gaseous phases partition through the membrane for detection up hole (1).5.3 Many factors influence the movement of volatile compounds from the formation across the membrane and into the carrier gas stream. One study has evaluated the effects of temperature and pressure at the face of the membrane on analyte permeability (12). Formation factors such as degree of saturation, clay content, proportion of organic carbon, porosity and permeability will also influence the efficiency of analyte movement from the formation across the membrane. Of course, the volatility, concentration, molecular size and mass, and water solubility of each specific VOC will influence movement across the membrane and rate of transport through the carrier gas line to the detectors.5.4 High analyte concentrations or the presence of Non-Aqueous Phase Liquid (NAPL) in the formation can result in analyte carry over in the MIP log (8, 13). This is a result of high analyte concentrations within the membrane matrix requiring time to diffuse out of the membrane into the carrier gas stream. This effect can lead to tailing of detector peaks on the MIP log to deeper intervals. Use of appropriate detectors and detector sensitivity settings can reduce this effect (14). Experience with log interpretation also helps to identify analyte carryover. Of course, targeted soil or groundwater sampling (D6001, D6282) should be performed routinely to verify log results and assist with log interpretation and site characterization (subsection 1.4).5.5 Some volatile contaminants are composed of multiple analytes of different molecular mass, size and volatility (e.g. gasoline). A detailed study was performed using a gas chromatograph (GC)-mass spectrometer system to assess the delay in movement of several components of gasoline from the membrane face, up the trunkline, to the MIP detectors (15). The larger, more massive analytes were found to be delayed in reaching the detectors. This effect means that some analyte mass will be graphed on the MIP log at a depth below where it entered the membrane. This “dispersion” effect is difficult to overcome. However, knowledge of the site-specific analyte(s) and experience with log interpretation can help the user assess these effects on log quality and contaminant distribution. Of course, targeted soil or groundwater sampling (D6001, D6282) should be performed routinely to verify log results and assist with log interpretation and site characterization (subsection 1.4).5.6 One of the important benefits of MIP logging is that the number of samples and laboratory analyses required to effectively characterize a VOC plume and source area can be greatly reduced, thus reducing investigative time and costs. Reduction of the number of samples required also reduces site worker exposure to hazardous contaminants. The data obtained from the MIP logs may be used to guide and target soil (D6282) and groundwater sampling (D6001) and the placement of long-term monitoring wells (D6724, D6725, D5092) (2, 7, 8) to more effectively characterize and monitor site conditions.5.7 Typically, only VOCs are detected by the MIP system in the subsurface. Use of specialized methods and/or detector systems may allow for detection of other gaseous or volatile contaminants (for example, mercury). Detection limits are subject to the selectivity and sensitivity of the gas phase detectors applied, the analytes encountered, and characteristics of the formation being penetrated (for example permeability, saturation, sand, clay and organic carbon content).5.8 Correlation of a series of MIP logs across a site can provide 2-D and 3-D definition of the of the primary VOC contaminant plume (7, 8). When lithologic logs such as EC, HPT, or CPT are obtained with the MIP data, contaminant migration pathways (7, 8) as well as storage and back diffusion zones (16) may be defined.5.9 Some investigations (8, 17-21) have found the MIP can be effective in locating zones where dense nonaqueous phase liquids (DNAPL) may be present. However, under some conditions, especially when inappropriate detectors and methods are used (22, 23), analyte carryover (15) can mask the bottom of the DNAPL body (9, 13, 24). These limitations can be minimized by use of appropriate methods and detectors (14, 23).5.10 While the conventional MIP system does not provide quantitative data or analyte specificity some researchers have modified the system with different sampling or detector systems in attempts to achieve quantitation and specificity (21, 25, 26). These methods typically reduce the speed of the logging process in order to provide improved quantitation and analyte specificity for a limited group of analytes.5.11 MIP data can be used to optimize site remediation by knowing the vertical and horizontal distribution of VOCs as well as obtaining information on the soil type and permeability where contaminants are held by using tandem lithologic sensors such as EC, HPT, or CPT. For example, materials injected for remediation are placed at correct depths in the formation based upon the detector responses of contaminants and the proper type of injection is performed based upon the formation permeability.5.11.1 This practice also may be used as a means of evaluating remediation performance. MIP can provide a cost-effective way to evaluate the progress of VOC remediation. When properly performed at suitable sites, logging locations can be compared from the initial pre-remedial investigation to logs of the VOC contaminants after remediation is initiated.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Practitioners that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc.. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors. Practice D3740 was developed for agencies engaged in the testing and/or inspection of soils and rock. As such, it is not totally applicable to agencies performing this practice. However, users of this practice should recognize that the framework of Practice D3740 is appropriate for evaluating the quality of an agency performing this practice. Currently there is no known qualifying national authority that inspects agencies that perform this practice.1.1 This standard practice describes a field procedure for the rapid delineation of volatile organic compounds (VOC) in the subsurface using a membrane interface probe. Logging with the membrane interface probe is usually performed with direct push (DP) equipment. DP methods are typically used in soils and unconsolidated formations, not competent rock.1.2 This standard practice describes how to obtain a real time vertical log of VOCs with depth. The data obtained is indicative of the total VOC level in the subsurface at depth. The MIP detector responses provide insight into the relative contaminant concentration based upon the magnitude of detector responses and a determination of compound class based upon which detectors of the series respond.1.3 The use of a lithologic logging tool is highly recommended to define hydrostratigraphic conditions, such as migration pathways, and to guide confirmation sampling and remediation efforts. Other sensors, such as electrical conductivity, hydraulic profiling tool, fluorescence detectors, and cone penetration tools may be included to provide additional information.1.4 Since MIP results are not quantitative, soil and water sampling (Guides D6001, D6282, D6724, and Practice D6725) methods are needed to identify specific analytes and exact concentrations. MIP detection limits are subject to the selectivity of the gas phase detector applied and characteristics of the formation being penetrated (for example: permeability, saturation, clay and organic carbon content).1.5 The values stated in either SI units or inch-pound units [given in brackets] are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.1.6.1 The procedures used to specify how data is collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analytical methods for engineering data.1.7 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without the consideration of a project’s many unique aspects. The word “standard” in the title means that the document has been approved through the ASTM consensus process.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 Applying Test Method F390 to large flat panel substrates presents a number of serious difficulties not anticipated in the development of that standard. The following problems are encountered.5.1.1 The four-point probe method may be destructive to the thin film being measured. Sampling should therefore be taken close to an edge or corner of the plate, where the film is expendable. Special geometrical correction factors are then required to derive the true sheet resistance.5.1.2 Test Method F390 is limited to a conventional collinear probe arrangement, but a staggered collinear and square arrays are useful in particular circumstances. Correction factors are needed to account for nonconventional probe arrangements.5.1.3 Test Method F390 anticipates a precision testing arrangement in which the probe mount and sample are rigidly positioned. There is no corresponding apparatus available for testing large glass or plastic substrates. Indeed, it is common in flat panel display making that the probe is hand held by the operator.5.1.4 It is difficult, given the conditions cited in 5.1.3, to ensure that uniform probe spacing is not degraded by rough handling of the equipment. The phased square array, described, averages out probe placement errors.5.1.5 This practice is estimated to be precise to the following levels. Otherwise acceptable precision may be degraded by probe wobble, however (see 8.6.4).5.1.5.1 As a referee method, in which the probe and measuring apparatus are checked and qualified before use by the procedures of Test Method F390 paragraph 7 and this practice, paragraph 8: standard deviation, s, from measured sheet resistance, RS, is ≤ 0.01 RS.5.1.5.2 As a routine method, with periodic qualifications of probe and measuring apparatus by the procedures of Test Method F390 paragraph 7 and this practice, paragraph 8: standard deviation, s, from measured sheet resistance, RS, is ≤ 0.02 RS.1.1 This practice describes methods for measuring the sheet electrical resistance of sputtered thin conductive films deposited on large insulating substrates, used in making flat panel information displays. It is assumed that the thickness of the conductive thin film is much thinner than the spacing of the contact probes used to measure the sheet resistance.1.2 This standard is intended to be used with Test Method F390.1.3 Sheet resistivity in the range 0.5 to 5000 ohms per square may be measured by this practice. The sheet resistance is assumed uniform in the area being probed.1.4 This practice is applicable to flat surfaces only.1.5 Probe pin spacings of 1.5 mm to 5.0 mm, inclusive (0.059 to 0.197 in inclusive) are covered by this practice.1.6 The method in this practice is potentially destructive to the thin film in the immediate area in which the measurement is made. Areas tested should thus be characteristic of the functional part of the substrate, but should be remote from critical active regions. The method is suitable for characterizing dummy test substrates processed at the same time as substrates of interest.1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

6.1 Test Method A is the most frequently used in leak testing components which are structurally capable of being evacuated to pressures of 0.1 Pa (approximately 10−3 torr). Testing of small components can be correlated to calibrated leaks, and the actual leak rate can be measured or acceptance can be based on a maximum allowable leak. For most production needs acceptance is based on acceptance of parts leaking less than an established standard which will ensure safe performance over the projected life of the component. Care must be exercised to ensure that large systems are calibrated with reference leak at a representative place on the test volume. Leak rates are determined by calculating the net gain or loss through a leak in the test part that would cause failure during the expected life of the device.6.2 Test Method B is used for testing vacuum systems either as a step in the final test of a new system or as a maintenance practice on equipment used for manufacturing, environmental test or for conditioning parts. As the volume tends to be large, a check of the response time as well as system sensitivity should be made. Volume of the system in liters divided by the speed of the vacuum pump in L/s will give the response time to reach 63 % of the total signal. Response times in excess of a few seconds makes leak detection difficult.6.3 Test Method C is to be used only when there is no convenient method of connecting the leak detector to the outlet of the high vacuum pump. If a helium leak detector is used and the high vacuum pump is an ion pump or cryopump, leak testing is best accomplished during the roughing cycle as these pumps leave a relatively high percentage of helium in the high vacuum chamber. This will obscure all but large leaks, and the trace gas will quickly saturate the pumps.1.1 This practice covers procedures for testing and locating the sources of gas leaking at the rate of 1 × 10 −8 Pa m3/s (1 × 10−9 Std cm 3/s)3 or greater. The test may be conducted on any object to be tested that can be evacuated and to the other side of which helium or other tracer gas may be applied.1.2 Three test methods are described:1.2.1 Test Method A—For the object under test capable of being evacuated, but having no inherent pumping capability.1.2.2 Test Method B—For the object under test with integral pumping capability.1.2.3 Test Method C—For the object under test as in Test Method B, in which the vacuum pumps of the object under test replace those normally used in the leak detector.1.3 Units—The values stated in either SI or std-cc/sec units are to be regarded separately as standard. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

The shape and orientation of the probe tip determines which information can be reliably extracted from a scan. This applies to all types of scans. For instance, in surface roughness measurement, the probe tip radius has a profound effect on the spatial frequencies that the probe can reliably measure. Consequently, in reporting data from a probe microscope, it is important to obtain and include in the report information about the shape of the probe tip.1.1 This practice covers scanning probe microscopy and describes the parameters needed for probe shape and orientation.1.2 This practice also describes a method for measuring the shape and size of a probe tip to be used in scanning probe microscopy. The method employs special sample shapes, known as probe characterizers, which can be scanned with a probe microscope to determine the dimensions of the probe. Mathematical techniques to extract the probe shape from the scans of the characterizers have been published (2-5).This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

6.1 Test Method A is frequently used to test large systems and complex piping installations that can be filled with a trace gas. Helium is normally used. The test method is used to locate leaks but cannot be used to quantify except for approximation. Care must be taken to provide sufficient ventilation to prevent increasing the helium background at the test site. Results are limited by the helium background and the percentage of the leaking trace gas captured by the probe.6.2 Test Method B is used to increase the concentration of trace gas coming through the leak by capturing it within an enclosure until the signal above the helium background can be detected. By introducing a calibrated leak into the same volume for a recorded time interval, leak rates can be measured.1.1 This practice covers procedures for testing and locating the sources of gas leaking at the rate of 1 × 10 −7 Pa m3/s (1 × 10−8 Std cm3/s)3 or greater. The test may be conducted on any device or component across which a pressure differential of helium or other suitable tracer gas may be created, and on which the effluent side of the leak to be tested is accessible for probing with the mass spectrometer sampling probe.1.2 Two test methods are described:1.2.1 Test Method A—Direct probing, and1.2.2 Test Method B—Accumulation.1.3 Units—The values stated in either SI or std-cc/sec units are to be regarded separately as standard. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1. Scope and Object This clause of part 1 is applicable except as follows: 1.1 Scope Replacement: This Particular Standard specifies requirements for the safety of hand-held and hand-manipulated probe assemblies designed to be used with equipm

定价: 819元 / 折扣价: 697

在线阅读 收 藏

4.1 Electrical contact resistance is an important characteristic of the contact in certain components, such as connectors, switches, slip rings, and relays. Ordinarily, contact resistance is required to be low and stable for proper functioning of many devices or apparatus in which the component is used. It is more convenient to determine contact resistance with a probe than to incorporate the contact material into an actual component for the purpose of measurement. However, if the probe contact material is different from that employed in the component, the results obtained may not be applicable to the device.4.2 Information on contact resistance is useful in materials development, in failure analysis studies, in the manufacturing and quality control of contact devices, and in research.4.3 Contact resistance is not a unique single-valued property of a material. It is affected by the mechanical conditions of the contact, the geometry and roughness of contacting surfaces, surface cleanliness, and contact history, as well as by the material properties of hardness and conductivity of both contacting members. An objective of this practice is to define and control many of the known variables in such a way that valid comparisons of the contact properties of materials can be made.4.4 In some techniques for measuring contact resistance it is not possible to eliminate bulk resistance, that is, the resistance of the metal pieces comprising the contact and the resistance of the wires and connections used to introduce the test current into the samples. In these cases, the measurement is actually of an overall resistance, which is often confused with contact resistance.1.1 This practice describes equipment and techniques for measuring electrical contact resistance with a probe and the presentation of results.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides a quantitative measure of the pressure-sensitive tack of the adhesive.5.2 The method is designed for the adhesive mass itself and is suitable for measuring the tack of pressure-sensitive adhesives for use on both rigid and flexible backings.5.3 This test method is suitable for quality control and research purposes.1.1 This test method covers measurement of the pressure-sensitive tack of adhesives. This test method is applicable to those adhesives which form a bond of measurable strength rapidly upon contact with another surface and which can be removed from that surface cleanly, that is, without leaving a residue visible to the eye. For such adhesives, tack may be measured as the force required to separate an adhesive and the adherend at the interface shortly after they have been brought into contact under a defined load of known duration at a specified temperature.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers all single-use clinical thermometer probe covers and sheaths intended for use with any clinical thermometer. Requirements are given for safety, toxicity, handling, labeling, and physical integrity. Testing procedures for appropriate requirements and a glossary of terms used are provided. Toxicity test, leakage test, and compatibility test shall be performed to meet the requirements prescribed.1.1 This specification covers all single-use clinical thermometer probe covers and sheaths intended for use with any clinical thermometer. Requirements are given for safety, toxicity, handling, labeling, and physical integrity. Testing procedures for appropriate requirements and a glossary of terms used within the standards are provided.1.2 The requirements contained herein are intended to ensure adequate isolation of the patient from the temperature-measuring device. In addition, the safety and health of the patient shall not be adversely affected. When used in accordance with the manufacturer’s instructions, the probe cover, sheath, and temperature-measuring device shall remit correct temperature readings as required in Specifications E667 and E1112.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Inclinometer monitoring programs often run several years or more. During this time, hundreds of surveys can be collected. Each new survey is processed by comparing it to a baseline survey.4.2 Over a period of years, normal wear and tear can gradually degrade the probe’s ability to produce new surveys that are directly comparable to the baseline survey. This may go unnoticed for some time, because the quality of readings may degrade in very small increments.4.3 When function tests are incorporated into an inclinometer monitoring program, the degradation of reading quality can be avoided. Probes that pass the tests can be used with confidence. Probes that fail the tests shall be returned to the probe manufacturer for servicing. It shall be noted that manufacturers calibrate inclinometer probes using high-precision, electronically-controlled equipment in temperature-controlled environments. Ordinary users do not have access to such equipment, so the pass/fail criteria suggested for these tests accommodate typical results produced by less precise equipment in a less controlled environment.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This practice describes three function tests that together can be used to verify that a vertical traversing inclinometer probe is working properly.1.2 This practice does not address calibration routines, electronic diagnostics, or repair of the probe, nor does it address inspection of the probe’s mechanical parts.1.3 This practice is not intended to replace manufacturers’ recommendations for servicing and calibration of inclinometer equipment, nor is it intended to replace maintenance and calibration schedules established by users as part of their quality programs.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Puncture using a 50 mm probe is applicable to determine the index strength resistance and deformation of a particular geotextile or geotextile-related products.5.2 This test method is considered satisfactory for acceptance testing of commercial shipments of geotextiles.5.3 In case of a dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of the type in question. The test specimens then should be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using Student's t-test for unpaired data and an acceptable probability level chosen by the two parties before the testing is begun. If a bias is found, either its cause must be found and corrected, or the purchaser and the supplier must agree to interpret future test results in light of the known bias.5.4 This test method is not applicable to materials that are manufactured in sizes that are too small to be placed into the test apparatus in accordance with the procedures in this test method. Furthermore, it is not appropriate to separate plies of a geosynthetic or geocomposite for use in this test method.1.1 This test method is an index test used to measure the force required to puncture a geotextile and geotextile-related products with a 50 mm diameter cylindrical probe. The dimensions of the probe provide a multidirectional force on the geotextile.NOTE 1: This test is also commonly known as CBR Puncture Test.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is useful as a rapid, nondestructive technique for the measurement of the in-place water mass per unit volume of soil and rock at desired depths below the surface.5.2 This test method is useful for informational and research purposes. The information acquired from this test method is best used for quality control and acceptance testing when correlated to actual water mass per unit volume using procedures and methods described in A1.2.3.5.3 The non-destructive nature of this test method allows repetitive measurements to be made at a single test location for statistical analysis and to monitor changes over time.5.4 The fundamental assumptions inherent in this test method are that the material under test is homogeneous and hydrogen present is in the form of water as defined by Test Method D2216.NOTE 1: The quality of the result produced by this standard test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection, and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the measurement of the water mass per unit volume of soil and rock by thermalization or slowing of fast neutrons, where the neutron source and the thermal neutron detector are placed at the desired depth in the bored hole lined by an access tube.1.1.1 For limitations see Section 6 on Interferences.1.2 The water mass per unit volume, expressed as mass per unit volume of the material under test, is determined by comparing the thermal neutron count rate with previously established calibration data (see Annex A1).1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Within the text of this standard, SI units appear first followed by the inch-pound (or other non-SI) units in brackets.1.3.1 Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The procedures used to specify how data are collected, recorded, and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards are given in Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The soil permittivity probe is used for the following purposes:5.1.1 The test method described is useful as a rapid, nondestructive technique for bulk measurements of the water mass per unit volume of soil and soil-aggregate which may, in conjunction with an independent bulk density determination, be used in the determination of dry density.5.1.2 The test method is used for quality control and acceptance testing of compacted soil and soil-aggregate mixtures as used in construction and also for research and development. The nondestructive nature allows repetitive measurements at a single test location and statistical analysis of the results.5.1.3 Volumetric Water Content—The fundamental assumptions inherent in the test method are that the dielectric constants value measured by the system in a given test site composed of soil or soil-aggregate are directly correlated to the volumetric water content of the soil or soil-aggregate, and that the material is homogeneous. (See 6, “Interferences.”)NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method describes the procedures for measuring the water mass per unit volume of soil and soil-aggregate by use of an in situ permittivity probe. Measurements are taken at a depth beneath the surface of the soil determined by the design of the probe.1.1.1 For limitations see Section 6 on Interferences.1.2 The permittivity probe is inserted into a hole drilled or punched into the soil being measured. As its name indicates, the probe measures the dielectric permittivity of the soil into which it is placed. Two electrodes, connected to an oscillating circuit, are mounted a predetermined distance apart. These electrodes act as the plates of a capacitor, with the soil between the plates forming the capacitor dielectric.1.2.1 The probe circuit creates an oscillating electric field in the soil. Changes in the dielectric permittivity of the soil are indicated by changes in the circuit’s operating frequency. Since water has a much higher dielectric constant (80) than the surrounding soil (typically around 4), the water content can be related by a mathematical function to the change in dielectric permittivity, and, consequently, the changes in the circuit’s operating frequency.1.2.2 The construction, deployment, and operating principle of the device described in this test method differ from other methods that measure the dielectric constant, bulk electrical conductivity, complex impedance, or electromagnetic impedance (see Test Methods D6780/D6780M, D7698, and D7830/D7830M) of the soil and relate the results to water mass per unit volume and/or water content.1.2.3 The water content of the soil measured by the permittivity probe is the volumetric water content, expressed as the ratio of the volume of water to the total volume occupied by the soil. This quantity is often converted, and displayed, by the probe in units of mass of water per volume of soil, or water mass per unit volume. This conversion is performed by multiplying the water content (in volume of water per volume of soil) by the density of water.1.3 Water content most prevalent in engineering and construction activities is known as the gravimetric water content, ω, and is the ratio of the mass of the water in pore spaces to the total mass of solids, expressed as a percentage. To determine this quantity, the bulk density of the soil under measurement must also be determined.1.4 Units—The values stated in SI units are to be regarded as the standard. Reporting the test results in units other than SI shall not be regarded as nonconformance with this standard.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.5.1 For purposes of comparing, a measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.1.5.2 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This test method covers the measurement of the sheet resistance of metallic thin films with a collinear four-probe array. It is intended for use with rectangular metallic films formed by deposition of a material or by a thinning process and supported by an insulating substrate. This test method is suitable for referee measurement purposes as well as for routine acceptance measurements. A collinear four-probe array is used to determine the sheet resistance by passing a measured direct current through the specimen between the outer probes and measuring the resulting potential difference between the inner probes. The sheet resistance is calculated from the measured current and potential values using correction factors associated with the geometry of the specimen and the probe spacing. The accuracy of the electrical measuring equipment is tested by means of an analog circuit containing a known standard resistor together with other resistors which simulate the resistance at the contacts between the probe tips and the film surface.1.1 This test method covers the measurement of the sheet resistance of metallic thin films with a collinear four-probe array. It is intended for use with rectangular metallic films between 0.01 and 100 [mu]m thick, formed by deposition of a material or by a thinning process and supported by an insulating substrate, in the sheet resistance range from 10 to 10 [omega]/[open-box] (see 3.1.3). 1.2 This test method is suitable for referee measurement purposes as well as for routine acceptance measurements. 1.3 The values stated in Si units are to be regarded as the standard. The values given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
17 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页