微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 923元 / 折扣价: 785

在线阅读 收 藏

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

3.1 This test method is designed to measure the apparent torsional modulus3 of a leather specimen. Experience has shown that the torsion modulus of leather is directly related to the characteristic known as stiffness when felt in a glove.41.1 This test method describes the use of a torsional apparatus for measuring the relative stiffness of gloving leathers. This test method does not apply to wet blue.1.2 The values stated in SI units are to be regarded as the standard. The values shown in parentheses are provided for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Data obtained from the procedure of this test method are indicative of the relative abrasiveness of fabric or carpet type synthetic playing surfaces.1.1 This test method is applicable to both laboratory and field measurement of synthetic turf surfaces used for sports.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Tinting strength is an essential property of printing ink dispersions. Although test results on wet drawdowns and tints do not guarantee equivalency of dry printed ink films, they provide useful parameters for quality assurance of established formulations, gaging relative degree of dispersion, and estimating the color value of colorants from different batches, sources, or grades.1.1 These test methods cover procedures for determining the relative tinting strength of paste-type printing ink dispersions by visual or instrumental evaluation of tints prepared by manual or automated mixing.1.2 These test methods are applicable to paste-type printing inks, flushed pigments, and other pigment dispersions that are essentially nonvolatile under ordinary room conditions and for which there is a wet reference standard of the same pigmentation and consistency. With proper choice of tinting base, they are applicable to dispersions of any color, including black and white.NOTE 1: The instrumental procedures for tinting strength are similar in principle to those described in Test Methods D387, D2745, D4838, and D6531.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 No single set of test conditions can represent all climatic and use conditions, so this WVTR test method serves more to compare different materials at a stated set of conditions than to predict their actual performance in the field under any conditions.5.2 The water vapor transmission rate, under known and carefully controlled conditions, may be used to evaluate the vapor barrier qualities of a sheet. Direct correlation of values obtained under different conditions of test temperature and relative humidity will be valid provided the barrier material under test does not undergo changes in solid state (such as a crystalline transition or melting point) at or between the conditions of test.1.1 This test method covers dynamic evaluation of the rate of transfer of water vapor through a flexible barrier material and allows conversion to the generally recognized units of water vapor transmission (WVT) as obtained by various other test methods including the gravimetric method described in Test Methods E96/E96M.1.2 Limitations—This test method is limited to flexible barrier sheet materials composed of either completely hydrophobic materials, or combinations of hydrophobic and hydrophilic materials having at least one surface that is hydrophobic.1.3 The minimum test value obtained by this test method is limited by the leakage of water vapor past the clamping seals of the test instrument. A reasonable value may be approximately 0.01 g/24 h·m2 for any WVTR method including the desiccant procedure of Test Methods E96/E96M at 37.8 °C, and 90 % relative humidity. This limit can be checked for each instrument with an impervious specimen such as aluminum foil. Calibration procedures can compensate for the leakage rate if so stated.1.4 This test method is not suitable for referee testing at this time, but is suitable for control testing and material comparison.1.5 Several other ASTM test methods are available to test a similar property. This test method is unique in that it closely duplicates typical product storage where a transfer of moisture from a package into the environment is allowed to proceed without constantly sweeping the environmental side with dry gas. Methods with constantly swept dry sides include Test Methods F1249 and F3299.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This standard provides a practice for RIQR evaluations of film and non-film imaging systems when exposed through an absorber material. Three alternate data evaluation methods are provided in Section 9. Determining RIQR requires the comparison of at least two radiographs or radiographic processes whereby the relative degree of image quality difference may be determined using the EPS plaque arrangement of Fig. 1 as a relative image quality indicator (RIQI). In conjunction with the RIQI, a specified radiographic technique or method must be established and carefully controlled for each radiographic process. This practice is designed to allow the determination of subtle changes in EPS that may arise to radiographic imaging system performance levels resultant from process improvements/changes or change of equipment attributes. This practice does not address relative unsharpness of a radiographic imaging system as provided in Practice E2002. The common element with any relative comparison is the use of the same RIQI arrangement for both processes under evaluation.4.2 In addition to the standard evaluation method described in Section 9, there may be other techniques/methods in which the basic RIQR arrangement of Fig. 1 might be utilized to perform specialized assessments of relative image quality performance. For example, other radiographic variables can be altered to facilitate evaluations provided these differences are known and documented for both processes. Where multiple radiographic process variables are evaluated, it is incumbent upon the user of this practice to control those normal process attributes to the degree suitable for the application. Specialized RIQR techniques may also be useful with micro focus X-ray, isotope sources of radiation or with the use of non-film radiographic imaging systems. RIQR may also be useful in evaluating imaging systems with alternate materials (RIQI and base plate) such as plastic, copper-nickel, or aluminum. When using any of these specialized applications, the specific method or techniques used shall be as specified and approved by the cognizant engineering organization.1.1 This standard covers a practice whereby industrial radiographic imaging systems or techniques may be comparatively assessed using the concept of relative image quality response (RIQR). Changes within a radiographic technique such as film/detector types, distances, or filtering/collimation can be comparatively assessed using this standard. The RIQR method presented within this practice is based upon the use of equivalent penetrameter sensitivity (EPS) described within Practice E1025 and subsection 5.4 of this practice. Fig. 1 illustrates a relative image quality indicator (RIQI) that has four different plaque thicknesses (0.38 mm, 0.25 mm, 0.20 mm, and 0.13 mm (0.015 in., 0.010 in., 0.008 in., and 0.005 in.)) sequentially positioned (from top to bottom) on an absorber plate of a specified material and thickness. The four plaques contain a total of 14 different arrays of penetrameter-type hole sizes designed to render varied conditions of threshold visibility when exposed to the appropriate radiation. Each “EPS” array consists of 30 identical holes; thus, providing the user with a quantity of threshold sensitivity levels suitable for relative image qualitative response comparisons. There are two standard materials (steel and plastic) specified herein for the RIQI and absorber. For special applications the user may design a non-standard RIQI-absorber configuration; however the RIQI configuration shall be controlled by a drawing similar to Fig. 1. Use of a non-standard RIQI-absorber configuration shall be described in the user’s written technique and approved by the CEO.1.2 This practice is not intended to qualify the performance of a specific radiographic technique nor for assurance that a radiographic technique will detect specific discontinuities in a specimen undergoing radiographic examination.1.3 This practice is not intended to be used to classify or derive performance classification categories for radiographic imaging systems. For example, performance classifications of radiographic film systems may be found within Test Method E1815, and manufacturer characterization of computed radiography (CR) systems may be found in Practice E2446. However, the RIQI and absorber described in this practice are used by Practice E2446 for manufacturer characterization of computed radiography (CR) systems and by Practice E2445 to evaluate performance and to monitor long term stability of CR systems.1.4 These tests are for applications below 4 MeV. When a gamma source or other high energy source is used, these tests may still be used to characterize the system, but may need a modification of the absorber thickness to adjust the available RIQR range as agreed between the user and cognizant engineering organization (CEO). For high-energy X-ray applications (4 MV to 25 MV), Test Method E1735 provides a similar RIQR standard practice.1.5 The values stated in SI are to be regarded as the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
108 条记录,每页 15 条,当前第 1 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页