微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This Communications bundle includes, "IEEE Vision for Smart Grid Communications: 2030 and Beyond", "IEEE Vision for Smart Grid Communications: 2030 and Beyond Roadmap", and the "IEEE Vision for Smart Grid Communications: 2030 and Beyond Reference Model". The IEEE Vision for Smart Grid Communications bundle discusses topics such as a vision of the communications-related aspects of the Smart Grid in the year 2030, and also lays out the technology roadmap that will lead us to the vision. This document starts with some basic knowledge of the power grid and follows up with fundamental building blocks for the communication infrastructure that will accompany the Smart Grid. Subsequently, network architectures, including overlays, are discussed at length. Also discussed, are important issues such as standards, regulations, security, and disruptive technologies. The last part of this document discusses emerging technologies such as the solid state transformer, wireless beamed power, and quantum key distribution. Throughout the document, a careful distinction is made between communications capabilities and the specific technologies that are required to support those capabilities. For Corporate or Institutional Access, request a custom quote for your organization at www.ieee.org/smartgridresearch

定价: 2410元 / 折扣价: 2049

在线阅读 收 藏
ASME Ash Fusion Research Project 发布日期 :  实施日期 : 

定价: 0

在线阅读 收 藏

The scope of this document is focused on computing technologies and the role they will play in the future electric grid. The computing technologies identified by the Computer Society Smart Grid Vision Project (CS-SGVP) team span many computing disciplines and do not necessarily represent all technologies that will shape the Smart Grid. Various projections of how Smart Grid concepts will influence power systems were considered. These projections span bulk transmission systems to isolated islands… read more of local generation, as well as different demand side participation concepts. read less

定价: 2060元 / 折扣价: 1751

在线阅读 收 藏

定价: 2060元 / 折扣价: 1751

在线阅读 收 藏

Vehicle electrification is envisioned to be a significant component of the forthcoming Smart Grid. In this document, a Smart Grid vision of electric vehicle technology for the next 30 years and beyond is presented from six different perspectives: 1) social, economic, and political implications, 2) intelligent vehicles and grid interaction, 3) infrastructure, 4) travelers, 5) communications, and 6) systems, operations, and scenarios. Following the chapters focusing on these distinct perspectives, conclusive remarks will overview the interconnections among all chapters. Discussions of key technologies dictating the real future of the evolution of vehicle electrification will also be included.

定价: 2060元 / 折扣价: 1751

在线阅读 收 藏

One of the primary goals of smart grid is to provide its consumers control over their energy consumption, with the help of real-time information, which in turn benefits both consumers and utilities in managing electricity. This report details the challenges faced by utilities, government bodies and industry bodies in understanding the consumer behavior and educating them on smart grid. It also suggests action items that can be undertaken in order to create large-scale awareness and… read more understanding among consumers. The report highlights the role of a consumer in successful smart grid deployment. It segregates consumers into various strata on the basis of attributes such as their requirements & priorities, smart grid technologies & services from which they will benefit most, and the methods of engaging with them. It also details out the key challenges faced by consumers in adopting smart grid services. These challenges have become a formidable roadblock in the smooth implementation of smart grids. The report also throws light on various expectations that consumers have from smart grids and suggests key socialization channels for mitigating concerns and delivering value to consumers. read less

定价: 2995元 / 折扣价: 2546

在线阅读 收 藏

This IEEE bundle consists of IEEE Vision for Smart Grid Controls: 2030 and Beyond, IEEE Vision for Smart Grid Control: 2030 and Beyond Roadmap, and IEEE Vision for Smart Grid Controls: 2030 and Beyond Reference Model. IEEE Vision for Smart Grid Controls: 2030 and Beyond highlights the role of control systems in the evolution of the Smart Grid. It includes an overview of research investigations that are needed for renewable integration, reliability, self-healing, energy efficiency, and resilience to physical and cyber attacks. The roadmaps parent document, IEEE Vision for Smart Grid Controls: 2030 and Beyond, discusses many topics that outline the evolution of the Smart Grid and the opportunities and challenges that it presents for control, ranging from generators to consumers, from planning to real-time operation, from current practice to scenarios in 2050 in the grid and all of its subsystems.

定价: 2410元 / 折扣价: 2049

在线阅读 收 藏

Countries across the globe are implementing smart grids in order to achieve reductions in emissions, increased grid efficiency, increased usage of renewable energy sources, increased consumer control over their energy consumption, and other economic benefits. Despite the promised benefits of the Smart Grid, there are various concerns that need to be addressed such as security threats, privacy concerns, high infrastructure costs, and increased tariffs for effective implementation. A large number… read more of possible threat scenarios and threat agents make it imperative for Smart Grid cyber security to be adequately addressed. This report details the cyber security vulnerabilities that exist in the Smart Grid value chain, the efforts undertaken by certain countries to mitigate these vulnerabilities, and the measures that need to be implemented going forward. Four such instances of cyber security breaches are highlighted in this report. read less

定价: 2995元 / 折扣价: 2546

在线阅读 收 藏

定价: 0

在线阅读 收 藏

定价: 0

在线阅读 收 藏

定价: 1099元 / 折扣价: 979 加购物车

在线阅读 收 藏

定价: 541元 / 折扣价: 482 加购物车

在线阅读 收 藏

4.1 Reliable dosimetry is indispensable for research on the effects of ionizing radiation on materials and products. Without reliable dosimetry valid conclusions cannot be reached, or the wrong conclusions might be reached.4.2 This document is intended to provide direction on how to conduct dosimetry for research and experiments on the effects of ionizing radiation on materials and products, and on the reporting of dosimetry results. Requirements on dosimetry and on dose ranges might differ between the various types of experiments to be carried out.4.3 Proper reporting of the manner in which the irradiation was carried out is important since the degree of radiation effect might be a function of various factors, other than absorbed dose, such as the radiation source, the absorbed-dose rate, energy of the incident radiation, ambient environmental conditions during irradiation, and the type of incident radiation. This document attempts to highlight the information, including the methodology and results of the absorbed-dose measurements, necessary for an experiment to be repeatable by other researchers.4.4 In most cases an experiment should be designed to irradiate the sample as uniformly as possible. In practice, a certain variation in absorbed dose will exist throughout the sample. Absorbed-dose mapping is used to determine the magnitude, location, and reproducibility of the maximum (Dmax) and minimum absorbed dose (Dmin) for a given set of experimental parameters. Dosimeters used for dose mapping must be capable of operation over the expected range of doses and must have sufficient spatial resolution to determine likely dose gradients (see ISO/ASTM 52303).4.5 Computer simulations might provide useful information about absorbed-dose distribution in the irradiated sample, especially near material interfaces (see ASTM E2232), but are not a substitute for dosimetry.1.1 This document covers essential recommendations for dosimetry needed to conduct research on the effects of ionizing radiation on materials, products and biological samples. Such research includes establishment of the quantitative relationship between absorbed dose and the relevant effects. This document also describes the overall need for dosimetry in such research, and for reporting of the results. Dosimetry should be considered an integral part of the experiment, and the researcher is responsible for ensuring the accuracy and applicability of the dosimetry system used.NOTE 1: For research involving food products, note that the Codex Alimentarius Commission has developed an international General Standard and a Code of Practice that address the application of ionizing radiation to the treatment of foods and which strongly emphasizes the role of dosimetry for ensuring that irradiation will be properly performed (1).2NOTE 2: This document includes tutorial information in the form of Notes. Researchers should also refer to the references provided at the end of the standard, and other applicable scientific literature, to assist in the experimental methodology as applied to dosimetry (2-5).1.2 This document covers research conducted using the following types of ionizing radiation: gamma radiation (typically from Cobalt-60 or Cesium-137 sources), X-radiation (bremsstrahlung, typically with energies between 50 keV and 7.5 MeV), and electrons (typically with energies ranging from 80 keV to more than 10 MeV). See ISO/ASTM 51608, 51649, 51818 and 51702.1.3 This document describes dosimetry recommendations for establishing the experimental method. It does not include dosimetry recommendations for installation qualification or operational qualification of the irradiation facility. These subjects are treated in ISO/ASTM 51608, 51649, 51818 and 51702.1.4 This document is not intended to limit the flexibility of the researcher in the determination of the experimental methodology. The purpose of the document is to ensure that the radiation source and experimental methodology are chosen such that the results of the experiment will be useful and understandable to other scientists and regulatory agencies. The total uncertainty in the absorbed-dose measurement results and the absorbed-dose variation within the irradiated sample should be taken into account in the interpretation of the research results (see ISO/ASTM Guide 51707).1.5 This document is one of a set of standards that provides recommendations for properly implementing dosimetry in radiation processing, and describes a means of achieving compliance with the requirements of ISO/ASTM 52628. This document is thus intended to be read in conjunction with ISO/ASTM 52628.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702 加购物车

在线阅读 收 藏
44 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页