微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 481元 / 折扣价: 409

在线阅读 收 藏
AS 1172.4:2019 Sanitary plumbing products Washbasins 现行 发布日期 :  2019-12-20 实施日期 : 

定价: 689元 / 折扣价: 586

在线阅读 收 藏
AS 1172.5:2019 Sanitary plumbing products Baths for ablutionary purposes 现行 发布日期 :  2019-12-20 实施日期 : 

定价: 689元 / 折扣价: 586

在线阅读 收 藏
AS 1976-1992 (R2016) Vitreous china used in sanitary appliances 现行 发布日期 :  1992-05-15 实施日期 : 

定价: 260元 / 折扣价: 221

在线阅读 收 藏

This specification covers grades of seamless, welded, and heavily cold worked austenitic and ferritic/austenitic stainless steel sanitary tubing. Seamless tubes shall be manufactured by a process that does not involve welding at any stage. Welded tubes shall be made using an automated welding process with no addition of filler metal during the welding process. Heavily cold worked tubes shall be made by applying cold working of not less than 35% reduction of thickness of both wall and weld to a welded tube prior to the final anneal. No filler shall be used in making the weld. All material shall be furnished in the heat-treated condition. A chemical analysis of either one length of flat-rolled stock or one tube shall be made for each heat. Each tube shall be subjected to mechanical tests like reverse flattening test, hydrostatic test or nondestructive electric test. The following surface finishes may be specified: mill finish, mechanically polished surface finish, finish No. 80, finish No. 120, finish No. 180, finish No. 240, electropolished finish, and maximum roughness average surface finish. Longitudinally polished finish shall be performed on the inside surface only while a circumferential polished finish shall be done on either the inside surface, outside surface, or both.1.1 This specification covers grades of seamless, welded, and heavily cold worked welded austenitic and ferritic/austenitic stainless steel sanitary tubing intended for use in the dairy and food industry and having special surface finishes. Pharmaceutical quality may be requested, as a supplementary requirement.1.2 This specification covers tubes in sizes up to and including 12 in. [300 mm] in outside diameter.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 Optional supplementary requirements are provided, and when one or more of these are desired, each shall be so stated in the order.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This is a quality control test performed at the manufacturing plant to establish that the finished, shippable pipe meets the leakage limits stated in the specifications.1.1 This test method covers procedures for testing of precast concrete pipe sections, prior to delivery, where maximum field leakage rates are specified.1.2 Tests described in this standard are intended to be used at the point of manufacture of the concrete pipe and are not intended for testing installed pipe (for field tests see Practices C969 and C1214). The user of this specification is advised that individual or multiple pipe sections may be tested for the purpose of testing the pipe barrel and additionally the joints in straight alignment when multiple pipe sections are tested.1.3 Test times are based on leakage rates and therefore are proportional only to the pipe diameter and are constant for any length of test pipe or pipeline.1.4 Test times tabulated and the rate of air loss in this standard are based on successful testing of installed pipelines. However, since air and water have different physical properties, retests of some pipelines not meeting field air tests have been successful when tested with water. The leakage rates of 0.0017 CFM/ft2 and 0.0003 CFM/ft2, were determined empirically as the maximums for pipe to meet the 50 and 200 gal/(in. of internal diameter) (mile of sewer) (24h) test rates, respectively.1.5 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.NOTE 1: The availability of this test procedure for concrete pipe varies from location to location. Check with local supplier(s) for availability and recommendations.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 6 for specific safety precautions.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This is a quality test control performed at the manufacturing plant to establish that the finished, shippable pipe meets the leakage limits stated in the specifications.1.1 This test method covers procedures for testing of precast concrete pipe sections, prior to delivery, where maximum field leakage rates are specified.1.2 Tests described in this standard are intended to be used at the point of manufacture of the concrete pipe and are not intended for testing installed pipe (for field tests see Practices C969 and C1214). The user of this specification is advised that individual or multiple pipe sections may be tested for the purpose of testing the pipe barrel and additionally the joints in straight alignment when multiple pipe sections are tested.1.3 Test times are based on leakage rates and therefore are proportional only to the pipe diameter and are constant for any length of test pipe or pipeline.1.4 Test times tabulated and the rate of air loss in this standard are based on successful testing of installed pipelines. However, since air and water have different physical properties, retests of some pipelines not meeting field air tests have been successful when tested with water. The leakage rates of 0.0017 CFM/ft2 and 0.0003 CFM/ft2, were determined empirically as the maximums for pipe to meet the 50 and 200 gal/(in. of internal diameter) (mile of sewer) (24h) test rates, respectively1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.NOTE 1: The availability of this test procedure for concrete pipe varies from location to location. Check with local supplier(s) for availability and recommendations.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 6 for specific safety precautions.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This practice describes the procedures involved in the structural reinforcement, sealing, protection, and rehabilitation of sanitary sewer manholes by the application of a prepackaged protective cementitious liner system to all cleaned interior surface from the bottom of the frame to the bench. The manholes to which the cementitious liner shall be applied may be made of brick, concrete, block, and various other materials. Detailed descriptions are given for all prepackaged materials necessary for this practice that include materials for substrate repairs, cementitious repair materials, infiltration water control materials, cementitious water control materials, chemical grout materials, and lining materials. Detailed descriptions are also provided for each procedure involved here which includes surface preparation, high pressure cleaning, surface repair, mixing of prepackaged cementitious repair materials, spray application of the cement liner by manual surface sealing or centrifugal cast process, and curing of the freshly applied cementitious mortar.1.1 This specification describes all the work required to structurally reinforce, seal, and protect sanitary sewer manholes. Applications include applying a prepackaged cementitious liner that can function as a full depth restoration or a partial depth repair. A uniform high-strength, fiber-reinforced cementitious mortar should be manually sprayed and hand troweled or centrifugally cast in a uniform, prescribed thickness to all cleaned, interior surfaces from the bottom of the frame to the bench. The cementitious liner may be applied to manholes constructed of brick, concrete, block, and various other materials.1.2 A manufacturer’s approved applicator shall furnish the complete application of the protective, prepackaged cementitious liner material. All of the cleaning, preparation, and application procedures shall be in accordance with the manufacturer’s recommendations.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Manholes are permit required confined spaces in accordance with OSHA definition and should be treated as such, requiring confined space entry permits, appropriate monitoring equipment, and the associated personal protective equipment.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Hydraulic cleaning methods include equipment that uses water and water velocity to clean the invert and walls of the vitrified clay sewer pipe.4.2 The practice of high-velocity sewer cleaning is best described as a hydraulic cleaning method that uses water pressure to remove obstructions and deposits in sewers or storm drains.4.3 There are different configurations of high-velocity sewer cleaning machines. These units have the capability of generating variable water pressures up to 3500 psi (24 MPa) and variable flow rates of 50-125 gal per min (gpm) (180-473 L per min).4.4 The water tank capacity on these units varies from 1000-1500 gal (3785-5678 L).4.5 The hose lengths vary between 500 and 1000 ft (152 and 305 m) in length with a diameter of 3/4- 11/4 in. NPT.4.6 There are number of different nozzles and tools that may be used during the cleaning process.4.7 Some high-velocity sewer cleaners have a vacuum conveyance system that use large fans or positive displacement vacuum pumps for material removal capabilities. With this type of system, material can be vacuumed from the manhole into a debris tank as it is brought back with the jet or tool and taken to a disposal area. These systems can be either trailer or truck mounted and are generally known as combination machines.4.8 The Occupational Safety and Health Administration (OSHA) has set guidelines for the safe removal of hazardous and nonhazardous substances as stated in OSHA Section 5 of Public Law 91-596; OSHA 29 USC 654; 29 CFR 1910.120; as well as DOT CFR Parts 106-7, 171-180, and 390-397.1.1 This practice covers the personnel requirements, operator training, operating procedures, and recommended equipment performance/design for the proper operation of pressure water-jet cleaning and cutting equipment as normally used by municipalities and contractors tasked with operations, maintenance, cleaning, and pre-rehabilitation cleaning work of vitrified clay mainline sewer pipe.1.2 The term “high-pressure water jetting” covers all water jetting, including the use of jets and hydromechanical tooling at pressures above 2000 psig (0.69 MPa).1.3 This practice covers the “high-pressure water jetting” of vitrified clay pipe and should not be applied to other pipe and pipe lining materials without evaluating the recommended cleaning procedure from the manufacturer to avoid damage.1.4 Units—The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 The significance of the LCA method is that it is a comprehensive technique for taking into account all relevant monetary values over the project design life and provides a measure of the total cost of the material, system, or structure.3.2 The LCA method can be effectively applied in both the preconstruction and bid stages of projects. After bids are taken, real costs can be used instead of estimates.1.1 This practice covers procedures for least cost (life cycle) analysis (LCA) of materials, systems, or structures proposed for use in the construction of concrete culvert, storm sewer, and sanitary sewer systems.NOTE 1: As intended in this practice, examples of analyses include, but are not limited to the following: (1) materials-pipe linings and coatings, concrete wall thicknesses, cements, additives, etc.; (2) systems-circular pipe, box sections, multiple lines, force mains, etc.; and (3) structures-wet and dry wells, pump and lift stations, etc.1.2 The LCA method includes costs associated with planning, engineering, construction (bid price), maintenance, rehabilitation, replacement, and cost deductions for any residual value at the end of the proposed project design life.1.3 For each material, system, or structure, the LCA method determines in present value constant dollars, the total of all initial and future costs over the project design life, and deducts any residual value.1.4 Major factors in the LCA method include project design life, service life, and relevant interest and inflation rates.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This guide provides information which the regulator/permit officials, engineers, waste disposal operators, and others will find helpful to (1) understand and distinguish between the many choices available, (2) understand the performance feature considerations for living up to EPA regulations for landfill daily covers, and (3) understand the various requirements and differences for putting these covers into practice at landfills.1.1 This guide is intended to assist specifiers and end users in assessing the different options available for sanitary landfill daily cover materials described as alternative (non-soil) daily covers (ADCs). Traditional daily cover consists of at least 6 in. (15 cm) of soil spread over the working faces of sanitary landfills. Alternative systems are attractive to landfill operations in order to conserve landfill disposal space, among other reasons.1.2 This guide assists in understanding different performance features of broad classifications of ADCs, and determining the extent and degree to which different ADCs are able to “control disease vectors, fires, odors, blowing litter, and scavenging, without presenting a threat to human health and the environment,” as intended by United States Environmental Protection Agency (USEPA) regulations.1.3 This guide is not intended to provide cost information regarding the various ADCs. As a standard guide, it does not dictate a protocol for the practice and testing of ADCs, but rather provides valuable information, guidance, and recommendations to interested parties concerning the many options available.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4.1 Exception—Metric units are used in 6.2.9.2.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers composite ribbed steel pipe, precoated and polyethyene lined intended for use for gravity flow sanitary sewers, storm sewers, and other special applications such as water transmission pipe, rehabilitation pipe, slip line pipe, and irrigation pipe. Pipes shall be fabricated in full circular cross-section with helical lock seams and helical ribs projecting outwardly. Specimens cut from production pipe normal to and across the lock seam shall conform to the required values of tensile strength. The pipe shall conform to the required values of nominal inside diameter and sheet thickness. Joint connectors for composite ribbed steel pipe precoated and polyethylene lined shall be specified as soil tight, water-resistant, or watertight.1.1 This specification covers composite ribbed steel pipe, precoated and polyethylene lined intended for use for gravity flow sanitary sewers, storm sewers, and other special applications such as water transmission pipe, rehabilitation pipe, slip line pipe, and irrigation pipe where extra corrosion and abrasion resistance are required. The steel sheet used in the fabrication of the pipe has a polymer coating over a metallic coating of zinc on both sides. In addition, as the pipe is being fabricated, the ribs are filled with polyethylene and then a polyethylene liner is extruded onto the interior surface.1.2 The exterior polymer precoating provides extra protection of the steel against soilside corrosion, in addition to that provided by the metallic coating, and also provides a dielectric barrier for cathodic protection. The interior polymer precoating provides an adhesive layer between the galvanized steel and the polyethylene lining. The applied lining provides internal protection against corrosion, erosion, and abrasion. By filling the rib which has a deltoid shape (smaller at the opening in the pipe wall than at the bottom of the rib), the polyethylene is mechanically connected to the pipe wall and the polyethylene liner is then thermally bonded to the filled rib.1.3 This specification does not include requirements for bedding, backfill, or the relationship between earth cover load and sheet thickness of the pipe. Experience has shown that the successful performance of this product depends upon the proper selection of sheet thickness, type of bedding and backfill, controlled manufacture in the plant, and care in the installation. The installation procedure is described in Practice A798/A798M.1.4 This specification is applicable to orders in either inch-pound units as A978, or in SI units as A978M. Inch-pound units and SI units are not necessarily equivalent. SI units are shown in brackets in the text for clarity, but they are the applicable values when the material is ordered to A978M.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The inspection of installed thermoplastic storm and sewer pipe verifies proper installation of the product and establishes a baseline for comparison for further evaluation.4.2 This guide is useful as a reference by an owner in preparing project specifications and to identify, evaluate and interpret observations during post installation inspections of pipe.4.3 Field evaluations either remotely or with person entry should be made by an independent 3rd party engineering firm or duly appointed representative of the owner.1.1 This guide identifies pipeline components, recommended protocols and evaluation criteria to consider in the inspection and acceptance of installed thermoplastic pipe by either person-entry, or remote inspection.1.2 This guide is intended for installation related observations and assumes that pre-installation inspection has been completed and all final settlement of fill has occurred. Inspection should be a minimum of 30 days after installation. This inspection period could be increased to accommodate the installer’s warranty period, which is typically one year or greater.NOTE 1: Pipe types covered under this standard are typically installed under the AASHTO LRFD Bridge Construction Specifications or Practice D2321.1.3 It applies to the thermoplastic non-pressure gravity flow storm and sewer pipe manufactured in accordance with Specifications D3034, F679, F714, F794, F894, F949, F1803, F2306, F2435, F2562, F2648, F2763, F2764, F2881, F2947, F3123, ISO 21138, ISO 4435, ISO 8772 and ISO 8773. It may also be considered for use for any similar thermoplastic pipe products not covered by this list but with similar physical or performance characteristics if approved by the owner.1.4 Person entry is normally used unless extenuating circumstances preclude this type inspection by the engineer. Remote inspection is recommended for use for pipe diameters of 30 in. [750 mm] and smaller unless otherwise specified by owner or engineer. Person entry ultimately depends on the safety, size, and environmental consideration assessments by the engineer.1.5 Access of installed pipe for manual inspection should follow OSHA 29 CFR PART 1926 SUBPART AA or ISO 45001, or any other applicable regulations for confined space entry. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers thermoplastic elastomeric (TPE) gasket materials for preformed elastomeric gaskets used in shielded and non-shielded mechanical couplings for gravity flow drain, waste, and vent (DWV), sewer, sanitary, and storm plumbing systems. Couplings include those that join similar and dissimilar piping sizes and materials. Gaskets shall be made of virgin thermoplastic elastomeric compound containing only clean reworked thermoplastic elastomer material. Gasket materials shall conform to specified values of the following physical requirements: hardness, elongation, tensile strength, heat aging, tear strength, water absorption, ozone resistance, compression set, oil immersion in IRM 903 oil, and stretch test for spliced gaskets.1.1 This specification covers thermoplastic elastomeric (TPE) gasket materials for preformed elastomeric gaskets used in shielded and non-shielded mechanical couplings. These couplings are used in gravity flow drain, waste, and vent (DWV), sewer, sanitary, and storm plumbing systems. They include couplings to join similar and dissimilar piping sizes and material.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This specification establishes some the key factors which govern the interpretation of videoborescoping tubular products for a specific application. It is recognized that the requirements for one application may be very different than those of another. Therefore, the specification allows for the inspection to be customized for the application by the user by allowing the purchaser to specify parameters which may be important for the application.1.1 This standard covers guidelines for ordering and examining tubular products for sanitary applications by videoborescoping. This method uses movable camera probe at the end of a cable to examine the interior of a tubular product. The image is then transmitted to an external monitor for analysis. The method is normally used when inside surface imperfections, not normally detected by other nondestructive methods, may result in contamination of the product which is contained by the tubular product.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
28 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页