微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

4.1 This guide covers procedures for crevice-corrosion testing of iron-base and nickel-base stainless alloys in seawater. The guidance provided may also be applicable to crevice corrosion testing in other chloride containing natural waters and various laboratory prepared aqueous chloride environments.4.1.1 While this guide focuses on testing of iron-base and nickel-base stainless alloys, the procedures and evaluations methods described herein have been successfully applied to characterize the crevice corrosion performance of other alloy systems (see, for example, Aylor et al.3).NOTE 1: In the case of copper alloys, the occurrence of crevice-related corrosion associated with different corrosion mechanisms takes place immediately adjacent to the crevice former rather than within the occlusion.4.2 This guide describes the use of a variety of crevice formers including the nonmetallic, segmented washer design referred to as the multiple crevice assembly (MCA) as described in 9.2.2.4.3 In-service performance data provide the most reliable determination of whether a material would be satisfactory for a particular end use. Translation of laboratory data from a single test program to predict service performance under a variety of conditions should be avoided. Terms, such as immunity, superior resistance, etc., provide only a general and relatively qualitative description of an alloy's corrosion performance. The limitations of such terms in describing resistance to crevice corrosion should be recognized.4.4 While the guidance provided is generally for the purpose of evaluating sheet and plate materials, it is also applicable for crevice-corrosion testing of other product forms, such as tubing and bars.4.5 The presence or absence of crevice corrosion under one set of conditions is no guarantee that it will or will not occur under other conditions. Because of the many interrelated metallurgical, environmental, and geometric factors known to affect crevice corrosion, results from any given test may or may not be indicative of actual performance in service applications where the conditions may be different from those of the test.1.1 This guide covers information for conducting crevice-corrosion tests and identifies factors that may affect results and influence conclusions.1.2 These procedures can be used to identify conditions most likely to result in crevice corrosion and provide a basis for assessing the relative resistance of various alloys to crevice corrosion under certain specified conditions.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific warning statement, see 7.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Identification of a brackish water, seawater, or brine is determined by comparison of the concentrations of their dissolved constituents. The results are used to evaluate the water as a possible pollutant, or as a commercial source of a valuable constituent such as lithium.1.1 This test method covers the determination of soluble lithium, potassium, and sodium ions in brackish water, seawater, and brines by atomic absorption spectrophotometry.21.2 Samples containing from 0.1 to 70 000 mg/L of lithium, potassium, and sodium may be analyzed by this test method.1.3 This test method has been used successfully with artificial brine samples. It is the user's responsibility to ensure the validity of this test method for waters of untested matrices.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversion to inch-pound units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Effective antifouling coatings are essential for the retention of speed and reduction of operating costs of ships. This test method is designed as a screening test to evaluate antifouling coating systems under conditions of hydrodynamic stress caused by water flow alternated with static exposure to a fouling environment. A dynamic test is necessary because of the increasing availability of AF coatings that are designed to ablate in service to expose a fresh antifouling surface. Because no ship is underway continually, a static exposure phase is included to give fouling microorganisms the opportunity to attach under static conditions. After an initial 30-day static exposure, alternated 30-day dynamic and static exposures are recommended as a standard cycle. The initial static exposure is selected to represent vessels coming out of drydock and sitting pierside while work is being completed. This gives the paint time to lose any remaining solvents, complete curing, absorb water, and, in general, stabilize to the in-water environment.5.2 This test method is intended to provide a comparison with a control antifouling coating of known performance in protecting underwater portions of ships’ hulls. This test method gives an indication of the performance and anticipated service life of antifouling coatings for use on seagoing vessels. However, the degree of correlation between this test method and service performance has not been determined.1.1 This test method covers the determination of antifouling performance and reduction of thickness of marine antifouling (AF) coatings by erosion or ablation (see Section 3) under specified conditions of hydrodynamic shear stress in seawater alternated with static exposure in seawater. An antifouling coating system of known performance is included to serve as a control in antifouling studies.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazards statement, see Section 8.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The determination of sulfate and other dissolved constituents is important in identifying the source of brines produced during the drilling and production phases of crude oil or natural gas.1.1 This test method covers the turbidimetric determination of sulfate ion in brackish water, seawater, and brines. It has been used successfully with synthetic brine grade waters; however, it is the user's responsibility to ensure the validity of this test method to other matrices.1.2 This test method is applicable to waters having an ionic strength greater than 0.65 mol/L and a sulfate ion concentration greater than 25 mg/L. A concentration less than 25 mg/L sulfate can be determined by using a standard addition method.1.3 For brines having an ionic strength of less than 0.65 mol/L, refer to Test Methods D516.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Alkalinity as carbonate and bicarbonate of saline water is very important in chemical waterflooding or tertiary recovery processes for recovering petroleum. Alkaline waters offer better wetting to the formation rock and improve oil release. As an additional benefit, ions that provide alkalinity adsorb on rock surfaces occupying adsorption sites and decrease the loss of recovery chemical by adsorption. Determination of alkalinity in waters used in tertiary recovery processes is therefore very important.5.2 An alkalinity value is necessary in the calculation of carbonate scaling tendencies of saline waters. It is also necessary to determine the alkalinity if the ionic balance of a water analysis is to be used as a check of the reliability of the analysis.1.1 This test method covers the determination of alkalinity in brackish water, seawater, and brines.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Chloride is present in virtually all oil field brines, seawaters, and many waste waters. Identification of the origin of the water and selection of its disposal method may be based upon the chloride content. The chloride content is also used to estimate the resistivity of formation waters and to differentiate between subsurface formations.1.1 This test method2 is applicable to the measurement of chloride in highly mineralized waters such as oil field brines, seawater, and brackish water. The test method is based upon the titration of chloride with silver nitrate, using a visual indicator.1.2 Samples containing from 10 mg to 150 mg of chloride can be analyzed by this test method. These levels are achieved by dilution as described in the test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 It is the user's responsibility to assure the validity of the method for untested types of water.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Since water containing acid-soluble barium compounds is known to be toxic, this test method serves the useful purpose of determining the barium in brackish water, seawater, and brines.1.1 This test method covers the determination of soluble barium ion in brackish water, sea-water, and brines by atomic absorption spectrophotometry.1.2 The actual working range of this test method is 1 to 5 mg/L barium.1.3 This test method was used successfully on artificial brine samples. It is the user's responsibility to ensure the validity of this test method for waters of untested matrices.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversion to inch-pound units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Identification of a brackish water, seawater, or brine is determined by comparison of the concentrations of their dissolved constituents. The results are used to evaluate the origin of the water, determine if it is a possible pollutant, or if it is related to a potential source of a valuable mineral. For example, in geochemical studies some correlation data indicate that fluoride is an indirect indicator of the presence of lithium.1.1 This test method2 covers the determination of soluble fluoride ions in brackish water, seawater and brines by use of a fluoride selective electrode.1.2 Samples containing from 1.0 to 25 mg/L can be analyzed by this test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Identification of a brackish water, seawater, or brine is determined by comparison of the concentrations of their dissolved constituents. The results are used to evaluate the origin of the water, determine if it is a possible pollutant or determine if it is a commercial source of a valuable constituent such as iodine or bromine.1.1 These test methods2 cover the determination of soluble iodide and bromide ions, or both, in brackish water, seawater, and brines. Four test methods are given as follows:1.1.1 Test Method A for both Iodide and Bromide Ions—Volumetric, for concentrations from 0.2 mg/L to 2000 mg/L iodide and from 5 mg/L to 6500 mg/L bromide (Sections 7 – 15).1.1.2 Test Method B for Iodide Ion—Colorimetric, for concentrations from 0.2 mg/L to 2000 mg/L iodide (Sections 16 – 25).1.1.3 Test Method C for Iodide Ion—Selective electrode, for concentrations from 1 mg/L to 2000 mg/L iodide (Sections 26 – 34).1.1.4 Test Method D for Bromide Ion—Colorimetric, for concentrations from 40 mg/L to 6500 mg/L bromide (Sections 35 – 44).1.2 Test Method A is intended for use on all brackish waters, seawaters, and brines that contain appreciable amounts of iodide or bromide ions or both. Test Methods B, C, and D, because of their rapidity and sensitivity, are recommended for the analysis of brackish waters, seawaters, and brines in the field and in the laboratory.1.3 Samples containing from 0.2 mg/L to 2000 mg/L of iodide or 5 mg/L to 6500 mg/L of bromide may be analyzed by these methods.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see 20.2 and 39.2.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method4 can be used to determine strontium ions in brackish water, seawater, and brines.1.1 This test method covers the determination of soluble strontium ion in brackish water, seawater, and brines by atomic absorption spectrophotometry.1.2 Samples containing from 5 to 2100 mg/L of strontium may be analyzed by this test method.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 All waters containing acid soluble barium compounds are known to be toxic. This test method is useful for the determination of barium in brines, seawater, and brackish waters.5.2 Consumption, inhalation, or absorption of 500 to 600 mg of barium is considered fatal to human beings. Lower levels may result in disorders of the heart, blood vessels, and nerves. The drinking water standards set the maximum contaminant level for barium as 2 mg/L barium.1.1 This test method covers the determination of dissolved and total recoverable barium in brines, seawater, and brackish waters by direct-current argon plasma atomic emission spectroscopy (DCP–AES).1.2 This test method has been tested in the range from 10 mg/L to 20 mg/L. Samples shall be diluted to contain concentrations within the calibration range (see 11.1 and 12.5). Higher concentrations can also be determined by changing to a less sensitive emission line.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This method allows for a definitive determination concerning aerobic microbial biodegradation occurring for plastic compounds of known uniform composition or of component materials used in the production of non-uniform (that is, blend) plastics.The use of radioactive 14C materials eliminates the possibility of carbon dioxide measurement from anything other than the parent compound in question.The use of this assay relies on the enrichment and growth of naturally occurring microbes in marine samples to biodegrade the radiolabeled plastic compounds generating cell material and carbon dioxide as the radiolabeled end products.Time course (several days to several weeks) measurements allows for a biodegradation rate determination to be made, but caution should be exercised in extrapolating this laboratory determined rate to what may actually occur in an open system marine environment which may experience fluctuations in nutrient availability, oxygen and temperature.It may be necessary to repeat this test more than once (depending on the season of water sampling) since microbial populations vary significantly over time and location.The seawater inoculum may be run with a sample (k 10 gram quantities) of marine sediment added to the seawater inoculum to increase the microbial diversity in establishing an enrichment capable of biodegrading the polymer being tested.1.1 This test is used to determine the degree of aerobic biodegradation of polymeric compounds utilized in plastic materials by determining the level of respiration of such radiolabeled carbon compounds to radiolabeled carbon dioxide.1.2 The test is designed to utilize the naturally occurring microbes in seawater as the inoculum for the enrichment and subsequent mineralization (biodegradation) of the test polymer using it as a carbon and energy source resulting in a carbon dioxide as an end product.1.3 The test method requires that the polymers to be assayed are synthesized using the radioisotope, carbon-14, and that the compound or plastic material be uniformly labeled with carbon-14.1.4 As controls, known biodegradable compounds, such as glucose or starch, also uniformly labeled with carbon-14, are run in order to determine the biological activity of the natural population.1.5 The concentration of added polymers shall be kept low so as not to cause limitation by oxygen, and the seawater inoculum is amended with nitrogen and phosphorus compounds to ensure that growth in not limited by these nutrients.1.6 The safety problems and regulations associated with working with radioactive materials are not addressed in the method. It is the responsibility of the individual users to establish and ensure adherence the proper safety, health, monitoring and all regulatory practices associated with the use of radioactive compounds.1.7 There is no similar or equivalent ISO standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This practice covers the mathematical calculation of the supersaturation of three principal sulfate scaling compounds found in industrial operations. Application of this standard practice to the prediction of scale formation in a given system, however, requires experience. The calculations tell the user if a water, or mixture of waters, is in a scaling mode. Whether or not scale will in fact form, how quickly it will form, where it will form, in what quantities, and what composition are subject to factors beyond the scope of this practice. However, based on how supersaturated a given water or mixture of waters is, an objective evaluation of the relative likelihood of scale formation can be made.NOTE 1: There are several personal computer (PC) type programs that are both available commercially and publicly that will perform these calculations.1.1 This practice covers the calculation of supersaturation of barium sulfate, strontium sulfate, and calcium sulfate dihydrate (gypsum) in brackish water, seawater, and brines in which barium, strontium, and calcium ions either coexist or exist individually in solution in the presence of sulfate ions.1.2 This practice is not applicable for calculating calcium sulfate dihydrate supersaturation if the temperatures of saline waters under investigation exceed 95°C. At temperatures above 95°C, hemianhydrate and anhydrite would be major insoluble forms.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The procedures described herein are recommended for evaluating the corrosion or marine fouling behavior, or both, of materials exposed to quiescent or local tidal flow conditions, or both.4.1.1 This practice is not intended to cover the influence of high seawater velocity or the behavior of materials in seawater which has been transported from its source.4.1.2 Some aspects of this practice may be applicable to testing in tanks and troughs, which are continuously provided with surface seawater pumped directly from the source. Additionally, some aspects may also be applicable to deep ocean testing.NOTE 1: Guide G78 provides guidance for conducting crevice corrosion tests under controlled seawater test conditions.4.2 While the duration of testing may be dictated by the test objectives, exposures of more than six months or one year are commonly used to minimize the effects of environmental variables associated with seasonal changes or geographic location, or both. Refer also to 7.3 for test duration recommendations.4.3 The procedures described are applicable for the exposure of simple test panels, welded test panels, or those configured to assess the effects of crevices, or both, such as those described in Guide G78. In addition, they are useful for testing of actual components and fabricated assemblies.4.4 It is prudent to include control materials with known resistance to seawater corrosion or fouling, or both, as described in Test Method D3623.NOTE 2: Materials which have been included in ASTM Worldwide Seawater Corrosivity Studies include UNS K01501 (carbon steel), UNS C70600 (90/10 CuNi) and UNS A95086 (5086-H116 Al).2, 4NOTE 3: In the case of evaluations of aluminum alloys, care should be exercised in the location of specimens near copper or high copper-containing alloys. In some instances, it is not sufficient to simply electrically isolate specimens to prevent bi-metallic (galvanic) corrosion; copper ions from nearby corroding copper or copper-base alloys can deposit on aluminum and accelerate its corrosion.1.1 This practice covers conditions for the exposure of metals, alloys, and other materials in natural surface seawater such as those typically found in bays, harbors, channels, and so forth,2 as contrasted with deep ocean testing.3 This practice covers full immersion, tidal zone and related splash, and spray zone exposures.2, 41.2 This practice sets forth general procedures that should be followed in conducting seawater exposure tests so that meaningful comparisons may be made from one location to another.1.3 This practice identifies recommended procedures for evaluating the effects of natural surface seawater on the materials exposed.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
15 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页