微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 124元 / 折扣价: 106 加购物车

在线阅读 收 藏

定价: 293元 / 折扣价: 250

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221

在线阅读 收 藏

定价: 481元 / 折扣价: 409

在线阅读 收 藏

1.1 This specification covers hot-rolled heavy-thickness carbon-steel sheet and strip of structural quality in coils beyond the size limits of Specification A570/A570M. This material is intended for structural purposes where mechanical test values are required and is available in the sizes listed below. This material is available only in coils as described below: Size Limits, Coils Only Product Width, in. (mm) Thickness, in. (mm) Strip over 8 to 12 0.230 to 0.750, incl (200 to 300) (6.0 to 19) Sheet over 12 to 48 0.230 to 0.750, incl (300 to 1200) (6.0 to 19) over 48 (1200) 0.180 to 0.750, incl (4.5 to 19) 1.1.1 The following grades are covered in this specification: Mechanical Properties Yield Point min, Tensile Strength Grade ksi (MPa) min, ksi (MPa) 30 30 (205) 49 (340) 33 33 (230) 52 (360) 36 36 (250) 53 (365) 40 40 (275) 55 (380) 1.2 The values stated in either inch-pound units or SI (metric) units are to be regarded separately as standard. Within the text the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values of the two systems may result in nonconformance with this specification. 1.3 Sheet and strip in coils of the sizes noted in 1.1 can be included in this specification only with the following provisions: 1.3.1 The material is not to be converted into steel plates for structural or pressure vessel use unless tested in complete accordance with the appropriate sections of Specifications A6/A6M (plates provided from coils) or A20/A20M (plates produced from coils), 1.3.2 This specification is not applicable to the steels covered by Specification A635/A635M, 1.3.3 The dimensional tolerances from Specification A635/A635M are applicable to material produced in accordance with this specification, 1.3.4 The material is to be fed directly from coils into a blanking press, drawing or forming operation, tube mill, rolling mill, or sheared or slit into blanks for subsequent drawing or forming, and 1.3.5 Not all strength levels are available in all thicknesses. The user should consult the producer for appropriate size limitations.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

The thickness of a coating is often critical to its performance.For some coating-substrate combinations, the interference microscope method is a reliable method for measuring coating thickness.This test method is suitable for specification acceptance.1.1 This test method covers the measurement of the thickness of transparent metal oxide and metallic coatings by utilizing a double-beam interference microscope.1.2 The test method requires that the specimen surface or surfaces be sufficiently mirrorlike to form recognizable fringes.1.3 This test method can be used nondestructively to measure 1 to 10μ m thick transparent coatings, such as anodic coatings on aluminum. The test method is used destructively for 0.1 to 10 μm thick opaque coatings by stripping a portion of the coating and measuring the step height between the coating and the exposed substrate. The stripping method can also be used to measure 0.2 to 10 μm thick anodic coatings on aluminum.1.4 The test method is usable as a reference method for the measurement of the thickness of the anodic film on aluminum or of metallic coatings when the technique includes complete stripping of a portion of the coating without attack of the substrate. For anodic films on aluminum, the thickness must be greater than 0.4 μm; the uncertainty can be as great as 0.2 μm. For metallic coatings, the thickness must be greater than 0.25 μm; the uncertainty can be as great as 0.1 μm.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The thickness of a compacted asphalt mixture is often used as a construction check to ensure that the proper quantity of materials has been placed on a project, and to correct strength measurement on constant diameter specimens with varying heights.NOTE 1: The text of this test method references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the test method.NOTE 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method covers determination of the thickness (or height) of compacted asphalt mixture specimens.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.2.1 Section 7.4 specifies SI units because they are the units used in the equations for Test Methods D1188/D1188M and D2726/D2726M. Performing calculations without first converting any measurements made in inch-pound units to SI units in 7.4 will result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method may be used as a substitute for, or in conjunction with, coring to determine the thickness of slabs, pavements, decks, walls, or other plate structures. There is a certain level of systematic error in the calculated thickness due to the discrete nature of the digital records that are used. The absolute systematic error depends on the plate thickness, the sampling interval, and the sampling period.4.2 Because the wave speed can vary from point-to-point in the structure due to differences in concrete age or batch-to-batch variability, the wave speed is measured (Procedure A) at each point where a thickness determination (Procedure B) is required.4.3 This test method is a pplicable to plate-like structures with lateral dimensions at least six times the thickness. These minimum lateral dimensions are necessary to prevent other modes3 of vibration from interfering with the identification of the thickness mode frequency in the amplitude spectrum. As explained in Note 12, the minimum lateral dimensions and acceptable sampling period are related.4.4 The maximum and minimum thickness that can be measured is limited by the details of the testing apparatus (transducer response characteristics and the specific impactor). The limits shall be specified by manufacturer of the apparatus, and the apparatus shall not be used beyond these limits. If test equipment is assembled by the user, thickness limitations shall be established and documented.4.5 This test method is not applicable to plate structures with overlays, such as a concrete bridge deck with an asphalt or portland cement concrete overlay. The method is based on the assumption that the concrete plate has the same P-wave speed throughout its depth.4.6 Procedure A is performed on concrete that is air dry as high surface moisture content may affect the results.4.7 Procedure B is applicable to a concrete plate resting on a subgrade of soil, gravel, permeable asphalt concrete, or lean portland cement concrete provided there is sufficient difference in acoustic impedance3 between the concrete and subgrade or there are enough air voids at the interface to produce measurable reflections. If these conditions are not satisfied, the waveform will be of low amplitude and the amplitude spectrum will not include a dominant peak at the thickness frequency. If the interface between the concrete and subgrade is rough, the amplitude spectrum will have a rounded peak instead of a sharp peak associated with a flat surface.4.8 The procedures described are not influenced by traffic noise or low frequency structural vibrations set up by normal movement of traffic across a structure.4.9 The procedures are not applicable in the presence of mechanical noise created by equipment impacting (jack hammers, sounding with a hammer, mechanical sweepers, and so forth) on the structure.4.10 Procedure A is not applicable in the presence of high amplitude electrical noise, such as may produced by a generator or some other source, that is transmitted to the data-acquisition system.1.1 This test method covers procedures for determining the thickness of concrete slabs, pavements, bridge decks, walls, or other plate-like structures using the impact-echo method.1.2 The following two procedures are covered in this test method:1.2.1 Procedure A: P-Wave Speed Measurement—This procedure measures the time it takes for the P-wave generated by a short-duration, point impact to travel between two transducers positioned a known distance apart along the surface of a structure. The P-wave speed is calculated by dividing the distance between the two transducers by the travel time.1.2.2 Procedure B: Impact-Echo Test—This procedure measures the frequency at which the P-wave generated by a short-duration, point impact is reflected between the parallel (opposite) surfaces of a plate. The thickness is calculated from this measured frequency and the P-wave speed obtained from Procedure A.1.2.3 Unless specified otherwise, both Procedure A and Procedure B must be performed at each point where a thickness determination is made.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Wet film thickness measurements of coatings applied on articles can be very helpful in controlling the thickness of the final dry coating, although in some specifications the wet film thickness is specified. Most protective and high performance coatings are applied to meet a requirement or specification for dry film thickness for each coat or for the completed coating system, or for both.4.2 There is a direct relationship between dry film thickness and wet film thickness. The wet film/dry film ratio is determined by the volume of volatiles in the coating as applied, including permitted thinning. With some flat coatings the dry film thickness is higher than that calculated from the wet film thickness. Consequently, the results from the notch gage are not to be used to verify the nonvolatile content of a coating.4.3 Measurement of wet film thickness at the time of application is most appropriate as it permits correction and adjustment of the film by the applicator at the time of application. Correction of the film after it has dried or chemically cured requires costly extra labor time, may lead to contamination of the film, and may introduce problems of adhesion and integrity of the coating system.4.4 The procedures using notched gages do not provide as accurate or sensitive measurements of wet film thickness as do the Interchemical and Pfund gages described in Test Methods D1212. Notch gages may, however, be used on nonuniform surfaces, like concrete block, that are too rough to use the Interchemical and Pfund gages. Also notched gages can be very useful in the shop and field for determining the approximate thickness of wet films over commercial articles where size(s) and shape(s) are not suitable for measurements by other types of gages. Examples of such items are ellipses, thin edges, and corners.4.5 An operator experienced in the use of a notched gage can monitor the coating application well enough to ensure the minimum required film thickness will be obtained.4.6 Application losses, such as overspray, loss on transfer, and coating residue in application equipment, are a significant unmeasurable part of the coating used on a job and are not accounted for by measurement of wet film thickness.1.1 This practice describes the use of thin rigid metal notched gages, also called step or comb gages, in the measurement of wet film thickness of organic coatings, such as paint, varnish, and lacquer.1.2 Notched gage measurements are neither accurate nor sensitive, but they are useful in determining approximate wet film thickness of coatings on articles where size(s) and shape(s) prohibit the use of the more precise methods given in Test Methods D1212.1.3 This practice is divided into the following two procedures:1.3.1 Procedure A—A square or rectangular rigid metal gage with notched sides is used to measure wet film thicknesses ranging from 3 to 2000 μm (0.5 to 80 mils 1). Such a gage is applicable to coatings on flat substrates and to coatings on articles of various sizes and complex shapes where it is possible to get the end tabs of the gage to rest in the same plane on the substrate.1.3.2 Procedure B—A circular thin rigid metal notched gage is used to measure wet film thicknesses ranging from 25 to 2500 μm (1 to 100 mils ). Such a gage is applicable to coatings on flat substrates and to coatings on objects of various sizes and complex shapes.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Personnel utilizing reference radiographs to this standard shall be qualified to perform radiographic interpretation in accordance with a nationally or internationally recognized NDT personnel qualification practice or standard and certified by the employer or certifying agency, as applicable. The practice or standard used and its applicable revision shall be identified in the contractual agreement between the using parties. If assistance is needed with interpreting specifications and product requirements as applied to the reference radiographs, a certified Level III shall be consulted before accept/reject decisions are made (if the Level III is the radiographic interpreter, this may be the same person).4.2 Graded reference images are intended to provide a guide enabling recognition of specific casting discontinuity types and relative severity levels that may be encountered during typical fabrication processes. Reference images containing ungraded discontinuities are provided as a guide for recognition of a specific casting discontinuity type where severity levels are not needed. These reference images are intended as a basis from which manufacturers and purchasers may, by mutual agreement, select particular discontinuity classes to serve as standards representing minimum levels of acceptability (see Sections 6 and 7).4.3 Reference images represented by this standard may be used, as agreed upon in a purchaser supplier agreement, for energy levels, thicknesses, or both outside the range of this standard when determined applicable for the casting service application.4.4 Procedures for evaluation of production images using applicable reference images of this standard are prescribed in Section 8; however, there may be manufacturing-purchaser issues involving specific casting service applications where it may be appropriate to modify or alter such requirements. Where such modifications may be appropriate for the casting application, all such changes shall be specifically called-out in the purchaser supplier agreement or contractual document. Section 9 addresses purchaser supplier requisites for where weld repairs may be required.4.5 Agreement should be reached between cognizant engineering organization and the supplier that the system used by the supplier is capable of detecting and classifying the required discontinuities.1.1 These digital reference images illustrate various categories, types, and severity levels of discontinuities occurring in steel castings that have section thicknesses up to 2 in. (50.8 mm). The digital reference images are an adjunct to this standard and must be purchased separately from ASTM International, if needed (see 2.3). Categories and severity levels for each discontinuity type represented by these digital reference images are described in 1.2.NOTE 1: The basis of application for these reference images requires a prior purchaser supplier agreement of radiographic examination attributes and acceptance criteria as described in Sections 4, 6, and 7 of this standard.1.2 These digital reference images consist of three separate volumes (see Note 2) as follows: (I) medium voltage (nominal 250-kV) X-rays, (II) 1-MV X-rays and Iridium-192 radiation, and (III) 2-MV to 4-MV X-rays and Cobalt-60 radiation. Unless otherwise specified in a purchaser supplier agreement (see 1.1), each volume is for comparison only with production digital images produced with radiation energy levels within the thickness range covered by this standard. Each volume consists of six categories of graded discontinuities of increasing severity level and four categories of ungraded discontinuities. Reference images containing ungraded discontinuities are provided as a guide for recognition of a specific casting discontinuity type where severity levels are not needed. The following is a list of discontinuity categories, types, and severity levels for the adjunct digital reference images of this standard:1.2.1 Category A – Gas porosity; severity levels 1 through 5.1.2.2 Category B – Sand and slag inclusions; severity levels 1 through 5.1.2.3 Category C – Shrinkage; 4 types:1.2.3.1 Ca–linear shrinkage– Severity levels 1 through 5.1.2.3.2 Cb–feathery shrinkage– Severity levels 1 through 5.1.2.3.3 Cc–sponge shrinkage– Severity levels 1 through 5.1.2.3.4 Cd–combinations of linear, feathery, and sponge shrinkage – Severity levels 1 through 5.1.2.4 Category D–Crack; 1 illustration.1.2.5 Category E–Hot Tear; 1 illustration.1.2.6 Category F–Insert; 1 illustration.1.2.7 Category G–Mottling; 1 illustration. (See Note 3.)NOTE 2: The digital reference images consist of the following:Volume I: Medium Voltage (nominal 250-kVp) X-Ray Reference Images – Set of 34 illustrations.Volume II: 1-MV X-Rays and Iridium-192 Reference Images – Set of 34 illustrations.Volume III: 2-MV to 4-MV X-Rays and Cobalt-60 Reference Images – Set of 34 illustrations.NOTE 3: Although Category G – Mottling is listed for all three volumes, the appearance of mottling is dependent on the level of radiation energy. Mottling appears reasonably prominent in Volume I; however, because of the higher radiation energy levels mottling may not be apparent in Volume II nor Volume III.1.3 All areas of this standard may be open to agreement between the cognizant engineering organization and the supplier, or specific direction from the cognizant engineering organization. These items should be addressed in the purchase order or the contract.1.4 These digital reference images are not intended to illustrate the types and degrees of discontinuities found in steel castings up to 2 in. (50.8 mm) in thickness when performing film radiography. If performing film radiography of steel castings up to 2 in. (50.8 mm) in thickness, refer to Reference Radiographs E446.1.5 Only licensed copies of the software and images shall be utilized for production inspection. A copy of the ASTM/User license agreement shall be kept on file for audit purposes. (See Note 4.)NOTE 4: Each volume of digital reference images consists of 7 digital data files, software to load the desired format and specific instructions on the loading process. The 34 reference images in each volume illustrate six categories of graded discontinuities and four categories of ungraded discontinuities and contain an image of a step wedge. Available from ASTM International Headquarters, Order No: RRE286801 for Volume I, RRE286802 for Volume II, and RRE286803 for Volume III.1.6 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Proper measurements of thickness and density of blanket or batt insulations are essential for determining thermal insulation properties. For a particular batt or blanket product, thickness and density are usually directly related to thermal insulating value.4.2 These test methods are of significant value in manufacturing quality control, to ensure that claimed insulation values of products are maintained.1.1 These test methods cover the determination of thickness and density of flexible, felted, or woven thermal insulating blankets, rolls, or batts composed of fibrous materials, with or without surface covering or reinforcement.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is designed to produce through-thickness failure data for structural design and analysis, quality assurance, and research and development. Factors that influence the through-thickness tensile strength, and should therefore be reported, include the following: material and fabric reinforcement, methods of material and fabric preparation, methods of processing and specimen fabrication, specimen stacking sequence, specimen conditioning, environment of testing, specimen alignment, speed of testing, time at temperature, void content, and volume reinforcement content.1.1 This test method determines the through-thickness “flatwise” tensile strength and elastic modulus of fiber reinforced polymer matrix composite materials. A tensile force is applied normal to the plane of the composite laminate using adhesively bonded thick metal end-tabs. The composite material forms are limited to continuous fiber (unidirectional reinforcement or two-dimensional fabric) or discontinuous fiber (nonwoven or chopped) reinforced composites.1.2 The through-thickness strength results using this test method will in general not be comparable to Test Method D6415 since this method subjects a relatively large volume of material to an almost uniform stress field while Test Method D6415 subjects a small volume of material to a non-uniform stress field.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3.1 Within the text, the inch-pound units are shown in brackets.1.4 This standard may involve hazardous materials, operations, and equipment.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Wet film thickness measurements aid in the prediction of dry film thickness. In instances where dry film thickness cannot be measured nondestructively, wet film thickness is frequently specified. Also, the ability to determine wet film thickness during application can provide the opportunity to correct the application procedures.1.1 These test methods cover the determination of wet film thickness of organic coatings such as paint, varnish, and lacquer. Two methods are described as follows:1.1.1 In Test Method A, the Wet Film Thickness Gage (English or Metric graduation (see 5.1)) is used to measure wet film thicknesses up to 60 mils on the English scale series, and up to 700 μm on the metric scale series (Sections 5 – 8).1.1.2 In Test Method B, the Pfund Gage is used to measure wet film thicknesses up to 14.2 mils (360 μm) (Sections 9 – 13).1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
96 条记录,每页 15 条,当前第 1 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页