微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
ASTM A938-18 Standard Test Method for Torsion Testing of Wire Active 发布日期 :  1970-01-01 实施日期 : 

4.1 The complex stress and strain conditions that occur in the sample during the torsion test are sensitive to minor variations in materials, making the torsion test a useful tool in assessing wire ductility under torsional loading.1.1 This test method describes the torsion (or twist) testing of metallic wire.1.2 The values stated in U.S. customary units are to be regarded as the standard. The SI equivalents of U.S. customary units may be approximate.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method provides a simple means of characterizing the thermomechanical behavior of plastics material. The data obtained may be used for quality control, research and development, and establishment of optimum processing conditions.5.2 Dynamic mechanical testing provides a sensitive method for determining thermomechanical characteristics by measuring the elastic and loss moduli as a function of frequency, temperature, or time. Plots of moduli and tan delta of a material versus temperature provide graphical representations indicative of physical and mechanical properties, effectiveness of cure (thermosetting resin system), and damping behavior under specified conditions.5.3 This test method can be used to assess5.3.1 The modulus as a function of temperature,5.3.2 The modulus as a function of frequency,5.3.3 The effects of processing treatment, including orientation,5.3.4 Relative resin behavioral properties, including cure and damping,5.3.5 The effects of substrate types and orientation (fabrication) on elastic modulus, and5.3.6 The effects of formulation additives that might affect processability or performance.5.4 Before proceeding with this test method, reference should be made to the specification of the material being tested. Any test specimen preparation, conditioning, dimensions, or testing parameters, or combination thereof, covered in the relevant ASTM materials specification shall take precedence over those mentioned in this test method. If there are no relevant ASTM materials specifications, then the default conditions apply.1.1 This test method covers the use of dynamic mechanical instrumentation for gathering and reporting the viscoelastic properties of thermoplastic and thermosetting resins and composite systems in the form of rectangular specimens molded directly or cut from sheets, plates, or molded shapes. The torsional data generated may be used to identify the thermomechanical properties of a plastics material or composition.1.2 This test method is intended to provide means for determining the torsional modulus of plastics as a function of temperature using nonresonant forced-vibration techniques, as outlined in Practice D4065. Plots of the elastic (storage), loss (viscous), and complex moduli and tan delta, as a function of frequency, time, or temperature are indicative of significant transitions in the thermomechanical performance of the polymeric material system.1.3 This test method is valid for a wide range of frequencies, typically from 0.01 to 100 Hz.1.4 Apparent discrepancies may arise in results obtained under differing experimental conditions. These apparent differences from results observed in another study can usually be reconciled without changing the observed data by reporting in full (as described in this test method) the conditions under which the data were obtained.1.5 Test data obtained by this test method are relevant and appropriate for use in engineering design.1.6 The values stated in SI units are to be regarded as standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This test method is equivalent to ISO 6721, Part 7.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This practice can be used to describe the effects of materials, manufacturing, and design variables on the fatigue resistance of metallic stemmed femoral components subjected to cyclic loading for relatively large numbers of cycles. The recommended test assumes a “worst case” situation where proximal support for the stem has been lost. It is also recognized that for some materials the environment may have an effect on the response to cyclic loading. The test environment used and the rationale for the choice of that environment should be described in the report. It is recognized that actual in vivo loading conditions are not ofconstant amplitude. However, there is not sufficient information available to create standard load spectrums for metallic stemmed femoral components. Accordingly, a simple periodic constant amplitude force is recommended. In order for fatigue data on femoral stems to be useful for comparison, it must be reproducible among different laboratories. Consequently, it is essential that uniform procedures be established.1.1 This practice describes a method for the fatigue testing of metallic stemmed femoral components used in hip arthroplasty. The described method is intended to be used to evaluate the comparison of various designs and materials used for stemmed femoral components used in the arthroplasty. This practice covers procedures for the performance of fatigue tests using (as a forcing function) a periodic constant amplitude force. 1.2 This practice applies primarily to one-piece prostheses and modular components, with head in place such that prostheses should not have an anterior/posterior bow, and should have a nearly straight section on the distal 50 mm of the stem. This practice may require modifications to accommodate other femoral stem designs. 1.3 The values stated in SI units are to be regarded as the standard. 1.4 For additional information see Refs. (1-5) .

定价: 0元 / 折扣价: 0

在线阅读 收 藏

3.1 This test method provides a means for determining the torsional stiffness of Alpine skis. It is not intended to evaluate the data with regard to the quality of the ski.1.1 This test method covers the measurement of ski forebody torsion and ski afterbody torsion of adult Alpine skis.1.2 No limitation to ski size is proposed. This test method is applicable to all Alpine skis.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This practice can be used to describe the effects of materials, manufacturing, and design variables on the fatigue resistance of metallic stemmed femoral components subjected to cyclic loading for relatively large numbers of cycles. The recommended test assumes a worst case situation in which proximal support for the stem has been lost. It is also recognized that, for some materials, the environment has an effect on the response to cyclic loading (see 12.7). The test environment used and rationale for the choice of that environment should be described in the test report.It is recognized that actual in vivo loading conditions are not constant amplitude. However, sufficient information is not available to create standard load spectrums for metallic stemmed femoral components. A simple periodic constant amplitude force is accordingly recommended.1.1 This practice covers a method for the fatigue testing of metallic stemmed femoral components used in hip arthroplasty. The described method is intended to be used for evaluation in comparisons of various designs and materials used for stemmed femoral components used in the arthroplasty. This practice covers procedures for the performance of fatigue tests using (as a forcing function) a periodic constant amplitude force.1.2 This practice applies primarily to one-piece prostheses and femoral stems with modular heads, with the head in place. Such prostheses should not have an anterior-posterior A-P bow or a medial-lateral M-L bow, and they should have a nearly straight section on the distal 50 mm of the stem. This practice may require modifications to accommodate other femoral stem designs.1.3 The values stated in SI units are to be regarded as the standard.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
5 条记录,每页 10 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页