
【国外标准】 Standard Test Method for Sampling of Process Vents with a Portable Gas Chromatograph
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method has been widely used to obtain mass balance data for process scrubbers, to determine the efficiency of VOC emission control equipment, and to obtain data to support air permit applications.5.2 This test method will have applications to the Maximum Achievable Control Technology (MACT) Rule and may have applications to Compliance Assurance Monitoring verification required by the 1990 Clean Air Act Title III Amendments.5.3 This test method, when used with Test Methods D3464 or D3154 or on-line process flow meter data, can be used to calculate detailed emission rate profiles for VOCs from process vents.5.4 This test method provides nearly real time results that can detect process changes or upsets that may be missed using conventional sorbent tube or integrated gas sampling bag sampling.1.1 This test method describes a method for direct sampling and analysis of process vents for volatile organic compound (VOC) vapors and permanent gases using a portable gas chromatograph (GC).1.2 This test method is applicable to analysis of permanent gases such as oxygen (O2), carbon dioxide (CO2) and nitrogen (N2), as well as vapors from organic compounds with boiling points up to 125°C.1.3 The detection limits obtained will depend on the portable gas chromatograph and detector used. Detectors available include but are not limited to thermal conductivity, photoionization, argon ionization, and electron capture. For instruments equipped with thermal conductivity detectors, typical detection limits are one to two parts per million by volume (ppm(v)) with an applicable concentration range to high percent by volume levels. For instruments with photoionization detectors detection limit of one to ten parts per billion by volume (ppb(v)) are obtainable with a concentration range from 1000 to 2000 ppm(v). The argon ionization detector has an achievable detection limit of one (ppb(v)), while the electron capture detector has an achievable detection limit of one part per trillion by volume (ppt(v)) for chlorinated compounds.1.4 The applicability of this test method should be evaluated for each VOC by determining stability, reproducibility, and linearity.1.5 The appropriate concentration range must also be determined for each VOC, as the range will depend on the vapor pressure of the particular VOC.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 8 on Hazards for additional safety precautions.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6060-17
标准名称:
Standard Test Method for Sampling of Process Vents with a Portable Gas Chromatograph
英文名称:
Standard Test Method for Sampling of Process Vents with a Portable Gas Chromatograph标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D6059-96(2011) Standard Test Method for Determining Concentration of Airborne Single-Crystal Ceramic Whiskers in the Workplace Environment by Scanning Electron Microscopy (Withdrawn 2020)
- 下一篇: ASTM D6061-01(2018)e1 Standard Practice for Evaluating the Performance of Respirable Aerosol Samplers
- 推荐标准
- ASTM D4399-05(2023) Standard Test Method for Measuring Electrical Conductivity of Electrocoat Baths
- ASTM D4404-18 Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry
- ASTM D4414-95(2020) Standard Practice for Measurement of Wet Film Thickness by Notch Gages
- ASTM D4416-09(2023) Standard Specification for Acrylic Acid
- ASTM D4417-21 Standard Test Methods for Field Measurement of Surface Profile of Blast Cleaned Steel
- ASTM D4418-22 Standard Practice for Receipt, Storage, and Handling of Fuels for Gas Turbines
- ASTM D4422-19 Standard Test Method for Ash in Analysis of Petroleum Coke
- ASTM D4426-01(2021) Standard Test Method for Determination of Percent Nonvolatile Content of Liquid Phenolic Resins Used for Wood Laminating
- ASTM D4437/D4437M-16(2023) Standard Practice for Nondestructive Testing (NDT) for Determining the Integrity of Seams Used in Joining Flexible Polymeric Sheet Geomembranes
- ASTM D4439-23b Standard Terminology for Geosynthetics
- ASTM D444-88(2020) Standard Test Methods for Chemical Analysis of Zinc Yellow Pigment (Zinc Chromate Yellow)
- ASTM D4440-23 Standard Test Method for Plastics: Dynamic Mechanical Properties Melt Rheology
- ASTM D4441-20 Standard Specification for Aqueous Dispersions of Polytetrafluoroethylene
- ASTM D4444-13(2018) Standard Test Method for Laboratory Standardization and Calibration of Hand-Held Moisture Meters
- ASTM D4445-23 Standard Test Method for Fungicides for Controlling Sapstain and Mold on Unseasoned Lumber (Laboratory Method)