
【国外标准】 Standard Test Method for On-Line Measurement of Residue After Evaporation of High-Purity Water
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Even so-called high-purity water will contain contaminants. While not always present, these contaminants may contribute one or more of the following: dissolved active ionic substances such as calcium, magnesium, sodium, potassium, manganese, ammonium, bicarbonates, sulfates, nitrates, chloride and fluoride ions, ferric and ferrous ions, and silicates; dissolved organic substances such as pesticides, herbicides, plasticizers, styrene monomers, deionization resin material; and colloidal suspensions such as silica. While this test method facilitates the monitoring of these contaminants in high-purity water, in real time, with one instrument, this test method is not capable of identifying the various sources of residue contamination or detecting dissolved gases or suspended particles.5.2 This test method is calibrated using weighed amounts of an artificial contaminant (potassium chloride). The density of potassium chloride is reasonably typical of contaminants found in high-purity water; however, the response of this test method is clearly based on a response to potassium chloride. The response to actual contaminants found in high-purity water may differ from the test method's calibration. This test method is not different from many other analytical test methods in this respect.5.3 Together with other monitoring methods, this test method is useful for diagnosing sources of RAE in ultra-pure water systems. In particular, this test method can be used to detect leakages such as colloidal silica breakthrough from the effluent of a primary anion or mixed-bed deionizer. In addition, this test method has been used to measure the rinse-up time for new liquid filters and has been adapted for batch-type sampling (this adaptation is not described in this test method).5.4 Obtaining an immediate indication of contamination in high-purity water has significance to those industries using high-purity water for manufacturing components; production can be halted immediately to correct a contamination problem. The emerging nano-particle technology industry will also benefit from this information.1.1 This test method covers the determination of dissolved organic and inorganic matter and colloidal material found in high-purity water used in the semiconductor, and related industries. This material is referred to as residue after evaporation (RAE). The range of the test method is from 0.001 μg/L (ppb) to 60 μg/L (ppb).1.2 This test method uses a continuous, real time monitoring technique to measure the concentration of RAE. A pressurized sample of high-purity water is supplied to the test method's apparatus continuously through ultra-clean fittings and tubing. Contaminants from the atmosphere are therefore prevented from entering the sample. General information on the test method and a literature review on the continuous measurement of RAE has been published.21.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Section 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D5544-16(2023)
标准名称:
Standard Test Method for On-Line Measurement of Residue After Evaporation of High-Purity Water
英文名称:
Standard Test Method for On-Line Measurement of Residue After Evaporation of High-Purity Water标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D3815/D3815M-05(2019) Standard Practice for Accelerated Weathering of Pressure-Sensitive Tapes by Open-Flame Carbon-Arc Exposure Apparatus
- ASTM D3816/D3816M-96(2020) Standard Test Method for Water Penetration Rate of Pressure-Sensitive Tapes
- ASTM D3822/D3822M-14(2020) Standard Test Method for Tensile Properties of Single Textile Fibers
- ASTM D3824-20 Standard Test Methods for Continuous Measurement of Oxides of Nitrogen in the Ambient or Workplace Atmosphere by Chemiluminescence
- ASTM D3829-20a Standard Test Method for Predicting the Borderline Pumping Temperature of Engine Oil
- ASTM D3831-22 Standard Test Method for Manganese in Gasoline By Atomic Absorption Spectroscopy
- ASTM D3836-13(2021) Standard Practice for Evaluation of Automotive Polish
- ASTM D3838-23 Standard Test Method for pH of Activated Carbon
- ASTM D3843-16(2021)e1 Standard Practice for Quality Assurance for Protective Coatings Applied to Nuclear Facilities
- ASTM D3849-22 Standard Test Method for Carbon Black—Morphological Characterization of Carbon Black Using Electron Microscopy
- ASTM D3850-19 Standard Test Method for Rapid Thermal Degradation of Solid Electrical Insulating Materials By Thermogravimetric Method (TGA)
- ASTM D3852-20 Standard Practice for Sampling and Handling Phenol, Cresols, and Cresylic Acid
- ASTM D3859-15(2023) Standard Test Methods for Selenium in Water
- ASTM D3861-22 Standard Test Method for Quantity of Water-Extractable Matter in Membrane Filters
- ASTM D3864-12(2021) Standard Guide for On-Line Monitoring Systems for Water Analysis