
【国外标准】 Standard Practice for Cleaning, Flushing, and Purification of Petroleum Fluid Hydraulic Systems
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Proper fluid condition is essential for the satisfactory performance and long life of the equipment. Prerequisites for proper lubrication and component performance are: (1) a well-designed hydraulic system, (2) the use of a suitable fluid, and (3) a maintenance program including proper filtration methods to ensure that the fluid is free of contaminants. These prerequisites are meaningless unless the hydraulic system is initially cleaned to a level that will prevent component damage on initial start up or when debris may be dislodged by any system upset.4.2 The cleaning and flushing of both new and used systems are accomplished by essentially the same procedure. In new systems, the emphasis is on the removal of contaminants introduced during the manufacture, storage, field fabrication, and installation. In used systems, the emphasis is on the removal of contaminants that are generated during operations, from failures that occur during operation; or contaminants introduced during overhaul. Both new and used systems may benefit from high velocity flushing to remove materials that can collect in hard to drain pockets or normally non-wetted surfaces.4.3 While the flushing and cleaning philosophies stated in this practice are applicable to all primary and servo hydraulic systems, the equipment specified herein does not apply to compact systems that use relatively small volumes of fluid unless they are servo systems where it is economically justified.4.4 It should be emphasized that the established procedures to be followed for flushing and cleaning the hydraulic systems should be accomplished through the cooperative efforts and agreement of the equipment manufacturer, the installer, the flushing service vendor, the operator, and the fluid supplier. No phase of these procedures should be undertaken without a thorough understanding of the possible effects of improper system preparation. The installation and cleaning and flushing of the equipment should not be entrusted to persons lacking in experience.1.1 This practice covers aid for the equipment manufacturer, the installer, the oil supplier and the operator in coordinating their efforts towards obtaining and maintaining clean petroleum fluid hydraulic systems. Of necessity, this practice is generalized due to variations in the type of equipment, builder's practices, and operating conditions. Constant vigilance is required throughout all phases of design, fabrication, installation, flushing, testing, and operation of hydraulic systems to minimize and reduce the presence of contaminants and to obtain optimum system reliability.1.2 This practice is presented in the following sequence: Section 1Referenced Documents 2Terminology 3 4Types of Contamination 5General 5.1Water 5.2Soluble Contaminants 5.3Insoluble Contaminants 5.4Lodged Contamination 5.4.2.1Suspended or Loose Contamination 5.4.2.2Contamination Control 6General 6.1Initial Filling 6.1.1In-Service Units 6.1.2Connection of Contamination Control System 6.1.3Piping or Tubing Contamination Control System 6.1.4Contamination Control Procedures 6.2Full Flow Contamination Control 6.2.1Bypass Contamination Control 6.2.2Batch Contamination Control 6.2.3Contamination Control Processes 6.3Gravity 6.3.1Mechanical 6.3.2Centrifuge 6.3.2.1Filters 6.3.2.2Supplementary Methods 6.3.3Limitations of Contamination Control Devices 6.3.4Storage 7General 7.1Inspection 8General 8.1System Components 8.2Valves, Strainers, and Coolers 8.2.1Sumps and Tanks 8.2.2Control Devices 8.2.3Pumps 8.2.4Flushing Program 9General 9.1Preparation of System for Flushing 9.2Fluid Heating Prior to Flushing 9.3Selection of Flushing Oils 9.4System Operation Fluid 9.4.1Special Flushing Oil 9.4.2Flushing Oil Selection Guide 9.4.3Flushing Procedure for New Systems 9.5Flushing Oil Charge 9.5.1Cleaning of Filtration Devices 9.5.2Cleaning of System Components 9.5.3System Flushing and Flush Acceptance Criteria 9.5.4Draining of Flushing Oil 9.5.5Displacement Oil 9.5.6Interim Corrosion Protection 9.5.7New Fluid Charge 9.5.8Flushing of Used Systems 9.6General Guidelines 9.6.1Procedure 9.6.2System Maintenance 10Preinstallation 10.2In-Service Units 10.3Decision to Flush In-Service Hydraulic Systems 10.4Fluid Condition Monitoring 11Fluid Sampling Techniques 11.2Visual Inspection 11.3Laboratory Analysis 11.4Fluid Cleanliness Criteria 11.5General Information 12Centrifuge Ratings 12.2Coalescence 12.3Vacuum Dehydration 12.4Adsorption 12.51.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D4174-23
标准名称:
Standard Practice for Cleaning, Flushing, and Purification of Petroleum Fluid Hydraulic Systems
英文名称:
Standard Practice for Cleaning, Flushing, and Purification of Petroleum Fluid Hydraulic Systems标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E316-17 Standard Test Method for Determination of Iron in Manganese Ores by Hydrogen Sulfide Reduction-Dichromate Titrimetry
- ASTM E3161-21 Standard Practice for Preparing a Pseudomonas aeruginosa or Staphylococcus aureus Biofilm using the CDC Biofilm Reactor
- ASTM E3163-18 Standard Guide for Selection and Application of Analytical Methods and Procedures Used during Sediment Corrective Action
- ASTM E3164-23 Standard Guide for Contaminated Sediment Site Risk-Based Corrective Action – Baseline, Remedy Implementation and Post-Remedy Monitoring Programs
- ASTM E3166-20e1 Standard Guide for Nondestructive Examination of Metal Additively Manufactured Aerospace Parts After Build
- ASTM E3168-20a Standard Practice for Determining Low-Contrast Visual Acuity of Radiographic Interpreters
- ASTM E317-21 Standard Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments
- ASTM E3170/E3170M-18(2023) Standard Practice for Phased Array Ultrasonic Testing of Polyethylene Electrofusion Joints
- ASTM E3171-21a Standard Test Method for Determination of Total Silver in Textiles by ICP-OES or ICP-MS Analysis
- ASTM E3178-18 Standard Practice for Evaluating Static and Cidal Chemical Decontaminants against Bacillus Spores using Centrifugal Filtration Tubes
- ASTM E3182-20 Standard Practice for Preparing an Occupant Exposure Screening Report (OESR) for Substances in Installed Building Products
- ASTM E3186-19 Standard Guide for Use and Testing of Dry-Block Temperature Calibrators
- ASTM E3191-18 Standard Specification for Permanent Foaming Fixatives Used to Mitigate Spread of Radioactive Contamination
- ASTM E3192/E3192M-20 Standard Practice for Soft Armor Conditioning by Tumbling
- ASTM E3197-23 Standard Terminology Relating to Examination of Fire Debris