
【国外标准】 Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The U-bend specimen may be used for any metal alloy sufficiently ductile to be formed into the U-shape without mechanically cracking. The specimen is most easily made from strip or sheet but can be machined from plate, bar, castings, or weldments; wire specimens may be used also.5.2 Since the U-bend usually contains large amounts of elastic and plastic strain, it provides one of the most severe tests available for smooth (as opposed to notched or precracked) stress-corrosion test specimens. The stress conditions are not usually known and a wide range of stresses exist in a single stressed specimen. The specimen is therefore unsuitable for studying the effects of different applied stresses on stress-corrosion cracking or for studying variables that have only a minor effect on cracking. The advantage of the U-bend specimen is that it is simple and economical to make and use. It is most useful for detecting large differences between the stress-corrosion cracking resistance of (a) different metals in the same environment, (b) one metal in different metallurgical conditions in the same environment, or (c) one metal in several environments.1.1 This practice covers procedures for making and using U-bend specimens for the evaluation of stress-corrosion cracking in metals. The U-bend specimen is generally a rectangular strip that is bent 180° around a predetermined radius and maintained in this constant strain condition during the stress-corrosion test. Bends slightly less than or greater than 180° are sometimes used. Typical U-bend configurations showing several different methods of maintaining the applied stress are shown in Fig. 1.FIG. 1 Typical Stressed U-bends1.2 U-bend specimens usually contain both elastic and plastic strain. In some cases (for example, very thin sheet or small diameter wire) it is possible to form a U-bend and produce only elastic strain. However, bent-beam (Practice G39 or direct tension (Practice G49)) specimens are normally used to study stress-corrosion cracking of strip or sheet under elastic strain only.1.3 This practice is concerned only with the test specimen and not the environmental aspects of stress-corrosion testing, which are discussed elsewhere (1)2 and in Practices G35, G36, G37, G41, G44, G103 and Test Method G123.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM G30-22
标准名称:
Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens
英文名称:
Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E3104-17(2023) Standard Specification for Strippable and Removable Coatings to Mitigate Spread of Radioactive Contamination
- ASTM E3107/E3107M-23 Standard Test Method for Resistance to Penetration and Backface Deformation for Ballistic-resistant Torso Body Armor and Shoot Packs
- ASTM E3111/E3111M-22 Standard Test Methods for Ballistic Resistant Head Protection
- ASTM E3115-17(2023) Standard Guide for Capturing Facial Images for Use with Facial Recognition Systems
- ASTM E3116-23 Standard Test Method for Viscosity Measurement Validation of Rotational Viscometers
- ASTM E3118/E3118M-22 Standard Test Methods to Evaluate Seismic Performance of Suspended Ceiling Systems by Full-Scale Dynamic Testing
- ASTM E3119-19 Standard Test Method for Accelerated Aging of Environmentally Controlled Dynamic Glazing
- ASTM E3120-19 Standard Specification for Evaluating Accelerated Aging Performance of Environmentally Controlled Dynamic Glazings
- ASTM E3121/E3121M-17 Standard Test Methods for Field Testing of Anchors in Concrete or Masonry
- ASTM E3130-21 Standard Guide for Developing Cost-Effective Community Resilience Strategies
- ASTM E3131-17 Standard Specification for Nucleic Acid-Based Systems for Bacterial Pathogen Screening of Suspicious Visible Powders
- ASTM E3132/E3132M-17 Standard Practice for Evaluating Response Robot Logistics: System Configuration
- ASTM E3134-20 Standard Specification for Transportation Tunnel Structural Components and Passive Fire Protection Systems
- ASTM E3137/E3137M-18 Standard Specification for Heat Meter Instrumentation
- ASTM E314-16 Standard Test Methods for Determination of Manganese in Iron Ores by Pyrophosphate Potentiometry and Periodate Spectrophotometry Techniques