
【国外标准】 Standard Guide for Plane Strain Fracture Toughness Testing of Non-Stress Relieved Aluminum Products
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 The property KIc, determined by Test Method E399 or ISO 12135, characterizes a material's resistance to fracture in a neutral environment and in the presence of a sharp crack subjected to an applied opening force or moment within a field of high constraint to lateral plastic flow (plane strain condition). A KIc value is considered to be a lower limiting value of fracture toughness associated with the plane strain state.4.1.1 Thermal quenching processes used with precipitation hardened aluminum alloy products can introduce significant residual stresses.5 Mechanical stress relief procedures (stretching, compression) are commonly used to relieve these residual stresses in products with simple shapes. However, in the case of mill products with thick cross-sections (for example, heavy gauge plate or large hand forgings) or complex shapes (for example, closed die forgings, complex open die forgings, stepped extrusions, castings), complete mechanical stress relief is not always possible. In other instances residual stresses may be introduced into a product during fabrication operations such as straightening, forming, or welding operations.NOTE 1: For the purposes of this guide, only bulk residual stress is considered (that is, of the type typically created during a quench process for thermal heat treatment) and not engineered residual stress, such as from shot peening or cold hole expansion.4.1.2 Specimens taken from such products that contain residual stress will likewise themselves contain residual stress. While the act of specimen extraction in itself partially relieves and redistributes the pattern of original stress, the remaining magnitude can still be appreciable enough to cause significant error in the test result.4.1.3 Residual stress is a non-proportional internal stress that is superimposed on the applied stress and results in an actual crack-tip stress-intensity factor that is different from one based solely on externally applied forces or displacements, and residual stress can bias the toughness measurement. Conceptually, compressive residual stress in the region of the crack tip must be overcome by the applied force before the crack tip experiences tensile stresses, thus biasing the KQ or KIc measurement to a higher value, potentially producing a non-lower-bound toughness value. Quantitatively, the effect depends on stress equilibrium for the continuously varying residual stress field and the associated crack tip response. Conversely, a tensile residual stress is additive to the applied force and biases the measured KQ or Kic result to a lower value, potentially under-representing the material “true” toughness capability.4.1.4 Tests that utilize deep edge-notched specimens such as the compact tension C(T) are particularly sensitive to distortion during specimen machining when substantial residual stress is present. In general, for those cases where such residual stresses are thermal quench induced, the resulting KIc or KQ result is typically biased upward (that is, KQ is higher than that which would have been achieved in a residual stress-free specimen). The inflated values result from the redistribution of residual stress during specimen machining and excessive fatigue precrack front curvature caused by variable residual stresses across the crack front.64.2 This guide can serve the following purposes:4.2.1 Provide warning signs that the measured value of KIc has been biased by residual stresses and may not be a lower limit value of fracture toughness.4.2.2 Provide experimental methods that can be used to minimize the effect of residual stress on measured fracture toughness values.4.2.3 Suggest methods that can be used to correct residual stress influenced values of fracture toughness to values that approximate a fracture toughness value representative of a test performed without residual stress bias.1.1 This guide covers supplementary guidelines for plane-strain fracture toughness testing of aluminum products for which complete stress relief is not practicable. Guidelines for recognizing when residual stresses may be significantly biasing test results are presented, as well as methods for minimizing the effects of residual stress during testing. This guide also provides guidelines for an empirical correction as well as interpretation of data produced during the testing of these products. Test Method E399 is the standard test method to be used for plane-strain fracture toughness testing of aluminum alloys.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM B909-21a
标准名称:
Standard Guide for Plane Strain Fracture Toughness Testing of Non-Stress Relieved Aluminum Products
英文名称:
Standard Guide for Plane Strain Fracture Toughness Testing of Non-Stress Relieved Aluminum Products标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E3168-20a Standard Practice for Determining Low-Contrast Visual Acuity of Radiographic Interpreters
- ASTM E317-21 Standard Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments
- ASTM E3170/E3170M-18(2023) Standard Practice for Phased Array Ultrasonic Testing of Polyethylene Electrofusion Joints
- ASTM E3171-21a Standard Test Method for Determination of Total Silver in Textiles by ICP-OES or ICP-MS Analysis
- ASTM E3178-18 Standard Practice for Evaluating Static and Cidal Chemical Decontaminants against Bacillus Spores using Centrifugal Filtration Tubes
- ASTM E3182-20 Standard Practice for Preparing an Occupant Exposure Screening Report (OESR) for Substances in Installed Building Products
- ASTM E3186-19 Standard Guide for Use and Testing of Dry-Block Temperature Calibrators
- ASTM E3191-18 Standard Specification for Permanent Foaming Fixatives Used to Mitigate Spread of Radioactive Contamination
- ASTM E3192/E3192M-20 Standard Practice for Soft Armor Conditioning by Tumbling
- ASTM E3197-23 Standard Terminology Relating to Examination of Fire Debris
- ASTM E3199-22a Standard Guide for Alternative Allocation Approaches to Modeling Input and Output Flows of Secondary Materials and Related Recycling Scenarios in Life Cycle Assessment
- ASTM E3200-21 Standard Guide for Investment Analysis in Environmentally Sustainable Manufacturing
- ASTM E3208-20 Standard Specification for Minimum Equipment Requirements for Mobile Surface Contaminant Classification and Measurement Equipment
- ASTM E3209/E3209M-20 Standard Test Method for Pavement Thickness by Magnetic Pulse Induction
- ASTM E321-20 Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Neodymium-148 Method)