
【国外标准】 Standard Test Method for Performance of Upright Overfired Broilers
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The energy input rate test is used to confirm that the overfired broiler is operating properly prior to further testing.5.2 Temperature uniformity of the broiler cavity may be used by food service operators to select an overfired broiler with the desired temperature gradients.5.3 Preheat energy and time can be useful to food service operators to manage energy demands and to know how quickly the overfired broiler can be ready for operation.5.4 Idle energy rate and pilot energy rate can be used to estimate energy consumption during non-cooking periods.5.5 Cooking energy efficiency is a precise indicator of overfired broiler energy performance while cooking a typical food product under various loading conditions. If energy performance information is desired using a food product other than the specified test food, the test method could be adapted and applied. Energy performance information allows an end user to better understand the operating characteristics of an overfired broiler.5.6 Production capacity can help an end user to better understand the production capabilities of an overfired broiler as it is used to cook a typical food product, helping with specification of the proper size and quantity of equipment. If production information is desired using a food product other than the specified test food, the test method could be adapted and applied.1.1 This test method evaluates the energy consumption and cooking performance of overfired broilers. The food service operator can use this evaluation to select an overfired broiler and understand its performance and energy consumption.1.2 This test method is applicable to gas and electric upright overfired broilers having input rates greater than 60,000 Btu/h (gas overfired broilers) or 10kW (electric overfired broilers).1.3 The overfired broiler can be evaluated with respect to the following (where applicable):1.3.1 Energy input rate (see 10.2),1.3.2 Temperature uniformity of the broiler cavity (see 10.3),1.3.3 Preheat energy consumption and time (see 10.4),1.3.4 Pilot energy rate (if applicable) (see 10.5),1.3.5 Idle energy rate (see 10.6), and1.3.6 Cooking energy efficiency and production capacity (see 10.7).1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This test method may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2237-03(2020)
标准名称:
Standard Test Method for Performance of Upright Overfired Broilers
英文名称:
Standard Test Method for Performance of Upright Overfired Broilers标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation