
【国外标准】 Standard Guide for Forensic Analysis of Fibers by Infrared Spectroscopy
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This guide is designed to assist an examiner in the selection of appropriate sample preparation methods for the analysis, comparison, and identification of fibers using IR spectroscopy. IR spectroscopy can provide additional compositional information than is obtained using polarized light microscopy alone. The extent to which IR spectral comparison is conducted will vary with specific sample and case evaluations.5.2 IR analysis should follow visible and fluorescence comparison microscopy, polarized light microscopy, and ultraviolet (UV)/visible spectroscopy. If no exclusionary differences are noted between the known and unknown samples in optical properties, then proceed to IR spectroscopy as the next step in the analytical scheme, as applicable.NOTE 1: IR analysis generally follows the aforementioned techniques since sample preparation (for example, flattening) irreversibly changes fiber morphology.5.3 IR spectroscopy should be conducted before dye extraction for chromatography due to the semi-destructive nature of the extraction technique. Because of the large number of sub-generic classes, forensic examination of acrylic and modacrylic fibers is likely to benefit significantly from IR spectral analysis (5). Useful distinctions between subtypes of nylon and polyester fibers can also be made by IR spectroscopy.5.4 IR spectroscopy can provide molecular information regarding major organic and inorganic components. Components in lesser amounts are typically more difficult to identify. Reasons for this include interference of the absorption bands of the major components with the less-intense bands of minor components, and sensitivity issues whereby the minor components are present at concentrations below the detection limits of the instrument.5.5 Fiber samples are prepared and mounted for microscopical IR analysis by a variety of techniques. IR spectra of fibers are obtained using an IR spectrometer coupled with an IR microscope, ATR, or diamond compression cell with beam condenser.5.6 IR spectroscopy can be used to obtain spectra for elucidation of the chemical composition of the fiber and for comparison of two or more fiber samples.5.6.1 When used to characterize the fiber type, the spectrum can be compared to reference spectra obtained from authenticated samples or reference standards.5.6.2 When used for spectral comparisons, the objective is to determine whether any exclusionary differences exist between the samples.1.1 Infrared (IR) spectroscopy is a valuable method of fiber polymer identification and comparison in forensic examinations. The use of IR microscopes, coupled with Fourier transform infrared (FTIR) spectrometers, has greatly simplified the IR analysis of single fibers, thus making the technique feasible for routine use in the forensic laboratory. This guide provides basic recommendations and information about IR spectrometers and accessories, with an emphasis on sampling techniques specific to fiber examinations. The particular method(s) employed by each examiner or laboratory will depend upon available equipment, examiner training, sample suitability, and sample size.1.2 This guide is intended for examiners with a basic knowledge of the theory and practice of IR spectroscopy, as well as experience in the handling and forensic examination of fibers. In addition, this guide is to be used in conjunction with a broader analytical scheme.1.3 If polymer identification is not readily apparent from optical data alone, an additional method of analysis, such as microchemical tests, melting point, IR spectroscopy, Raman spectroscopy, or pyrolysis gas chromatography, should be used. An advantage of IR spectroscopy is that the instrumentation is readily available in most forensic laboratories and the technique is minimally destructive.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard is intended for use by competent forensic science practitioners with the requisite formal education, discipline-specific training (see Practice E2917), and demonstrated proficiency to perform forensic casework.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2224-23ae1
标准名称:
Standard Guide for Forensic Analysis of Fibers by Infrared Spectroscopy
英文名称:
Standard Guide for Forensic Analysis of Fibers by Infrared Spectroscopy标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E866-23 Standard Specification for Corrosion-Inhibiting Adhesive Primer for Aluminum Alloys to Be Adhesively Bonded in Honeycomb Shelter Panels
- ASTM E867-23 Standard Terminology Relating to Vehicle-Pavement Systems
- ASTM E870-82(2019) Standard Test Methods for Analysis of Wood Fuels
- ASTM E871-82(2019) Standard Test Method for Moisture Analysis of Particulate Wood Fuels
- ASTM E872-82(2019) Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels
- ASTM E874-19 Standard Practice for Adhesive Bonding of Aluminum Facings to Nonmetallic Honeycomb Core for Shelter Panels
- ASTM E875-20 Standard Practice for Evaluation of Fungal Control Agents as Preservatives for Aqueous-Based Products Used in the Paper Industry
- ASTM E877-21 Standard Practice for Sampling and Sample Preparation of Iron Ores and Related Materials for Determination of Chemical Composition and Physical Properties
- ASTM E878-20 Standard Test Method for Determination of Titanium in Iron Ores and Related Materials by Diantipyrylmethane Ultraviolet Spectrophotometry
- ASTM E879-20 Standard Specification for Thermistor Sensors for General Purpose and Laboratory Temperature Measurements
- ASTM E88-11(2017) Standard Practice for Sampling Nonferrous Metals and Alloys in Cast Form for Determination of Chemical Composition
- ASTM E882-10(2016)e1 Standard Guide for Accountability and Quality Control in the Chemical Analysis Laboratory
- ASTM E887-21 Standard Test Method for Silica in Refuse-Derived Fuel (RDF) and RDF Ash
- ASTM E889-82(2023) Standard Test Method for Composition or Purity of a Solid Waste Materials Stream
- ASTM E90-23 Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements