
【国外标准】 Standard Practice for Measurement of Time-of-Wetness on Surfaces Exposed to Wetting Conditions as in Atmospheric Corrosion Testing
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
3.1 This practice provides a methodology for measuring the duration of wetness on a sensing element mounted on a surface in a location of interest. Experience has shown that the sensing element reacts to factors that cause wetness in the same manner as the surface on which it is mounted.3.2 Surface moisture plays a critical role in the corrosion of metals and the deterioration of nonmetallics. The deposition of moisture on a surface can be caused by atmospheric or climatic phenomena such as direct precipitation of rain or snow, condensation, the deliquescence (or at least the hygroscopic nature) of corrosion products or salt deposits on the surface, and others. A measure of atmospheric or climatic factors responsible for moisture deposition does not necessarily give an accurate indication of the TOW. For example, the surface temperature of an object may be above or below both the ambient and the dew point temperatures. As a result condensation will occur without an ambient meteorological indication that a surface has been subjected to a condensation cycle.3.3 Structural design factors and orientation can be responsible for temperature differences and the consequent effect on TOW as discussed in 4.2. As a result, some surfaces may be shielded from rain or snow fall; drainage may be facilitated or prevented from given areas, and so forth. Therefore various components of a structure can be expected to perform differently depending on mass, orientation, air flow patterns, and so forth. A knowledge of TOW at different points on large structures can be useful in the interpretation of corrosion or other testing results.3.4 In order to improve comparison of data obtained from test locations separated on a macrogeographical basis, a uniform orientation of sensor elements boldly exposed in the direction of the prevailing wind, at an angle of 30° above the horizontal is recommended. Elevation of the sensor above ground level should be recorded.3.5 Although this method does not develop relationships between TOW and levels of ambient relative humidity (RH), long term studies have been carried out to show that the TOW experienced annually by panels exposed under standard conditions is equivalent to the cumulative time the RH is above a given threshold value.2 This time value varies with location and with other factors. Probability curves have been developed for top and bottom surfaces of a standard panel at one location which show the probable times that a surface will be wet as a percentage of the cumulative time the relative humidity is at specific levels.3 If needed, it should be possible to develop similar relationships to deal with other exposure conditions.1.1 This practice covers a technique for monitoring time-of-wetness (TOW) on surfaces exposed to cyclic atmospheric conditions which produce depositions of moisture.1.2 The practice is also applicable for detecting and monitoring condensation within a wall or roof assembly and in test apparatus.1.3 Exposure site calibration or characterization can be significantly enhanced if TOW is measured for comparison with other sites, particularly if this data is used in conjunction with other site-specific instrumentation techniques.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM G84-89(2020)
标准名称:
Standard Practice for Measurement of Time-of-Wetness on Surfaces Exposed to Wetting Conditions as in Atmospheric Corrosion Testing
英文名称:
Standard Practice for Measurement of Time-of-Wetness on Surfaces Exposed to Wetting Conditions as in Atmospheric Corrosion Testing标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3016/F3016M-19 Standard Test Method for Surrogate Testing of Vehicle Impact Protective Devices at Low Speeds
- ASTM F3019/F3019M-19 Standard Specification for Chromium Free Zinc-Flake Composite, with or without Integral Lubricant, Corrosion Protective Coatings for Fasteners
- ASTM F302-09(2021) Standard Practice for Field Sampling of Aerospace Fluids in Containers
- ASTM F3021-17 Standard Specification for Universal Design of Fitness Equipment for Inclusive Use by Persons with Functional Limitations and Impairments
- ASTM F3022-16e1 Standard Test Method for Evaluating the Universal Design of Fitness Equipment for Inclusive Use by Persons with Functional Limitations and Impairments
- ASTM F3023-18 Standard Test Methods for Evaluating Design and Performance Characteristics of Stationary Upright and Recumbent Exercise Bicycles and Upper and Total Body Ergometers
- ASTM F3026-14(2019) Standard Guide for Helicopter Inland Search and Rescue (SAR) Crew Chief
- ASTM F3027-18 Standard Guide for Training of Personnel Operating in Mountainous Terrain (Mountain Endorsement)
- ASTM F3033-16(2021) Standard Practice for Installation of a Single-Sized, Cured-In-Place Liner Utilizing an Inflatable Bladder for Resurfacing Manhole Walls of Various Shapes and Sizes
- ASTM F3034-21 Standard Specification for Billets made by Winding Molten Extruded Stress-Rated High Density Polyethylene (HDPE)
- ASTM F3035-22 Standard Practice for Production Acceptance in the Manufacture of a Fixed Wing Light Sport Aircraft
- ASTM F3036-21 Standard Guide for Testing Absorbable Stents
- ASTM F3038-21 Standard Test Method for Timed Evaluation of Forced-Entry-Resistant Systems
- ASTM F3043-15 Standard Specification for “Twist Off” Type Tension Control Structural Bolt/Nut/Washer Assemblies, Alloy Steel, Heat Treated, 200 ksi Minimum Tensile Strength
- ASTM F3045-21 Standard Test Method for Evaluation of the Type and Viscoelastic Stability of Water-in-oil Mixtures Formed from Crude Oil and Petroleum Products Mixed with Water