
【国外标准】 Standard Guide for Characterization and Testing of Porcine Fibrinogen as a Starting Material for Use in Biomedical and Tissue-Engineered Medical Product Applications
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The purpose of this guide is to provide guidance on characterization of the properties of porcine fibrinogen as a starting material for surgical implants and as a matrix for tissue-engineered medical products (TEMPs). This guide contains a set of physical and chemical parameters directly related to the function of porcine fibrinogen. This guide can be used to help select and characterize appropriate fibrinogen starting materials for specific purposes. Not all tests or parameters are suitable for all uses of fibrinogen.5.2 Fibrinogen described in this guide may be used in various types of medical products including, but not limited to, implants, tissue-engineered medical products (TEMPs), and cell, drug, or DNA delivery vectors. The recommendations in this guide shall not be construed to guarantee the successful clinical application of any tissue-engineered medical product.5.3 In determining whether fibrinogen meets the requirements for use in a TEMP, the relevant regulatory authorities or other appropriate guidelines relating to the production, regulation, and approval of TEMP products shall be taken into account (Guide E1298, Practice F981, Practice F1983).1.1 This guide covers the evaluation of porcine fibrinogen suitable for use in biomedical or pharmaceutical applications including, but not limited to, tissue-engineered medical products (TEMPs).1.2 This guide addresses key parameters relevant for functionality, characterization, and purity of porcine fibrinogen.1.3 As with any material, some characteristics of porcine fibrinogen may be altered by processing techniques, such as electrospinning (1)2 and sterilization, required for the production of a specific formulation or device. Therefore, properties of fabricated forms of this protein should be evaluated using test methods that are appropriate to ensure safety and efficacy and are not addressed in this guide.1.4 The primary focus of this document is fibrinogen derived from porcine blood, which is similar to human fibrinogen. The biggest advantage that pigs have over other species (such as cattle, sheep, goats, elk, and deer) is that they are less likely to transmit transmissible spongiform encephalitis (TSE) (ISO 22442-1 Annex D; WHO Guidelines, 2003; WHO Guidelines, 2006; WHO Guidelines, 2010). The document may also discuss fibrinogen from other sources when useful information is available. Fibrin is also discussed in some sections.1.5 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F3515-21
标准名称:
Standard Guide for Characterization and Testing of Porcine Fibrinogen as a Starting Material for Use in Biomedical and Tissue-Engineered Medical Product Applications
英文名称:
Standard Guide for Characterization and Testing of Porcine Fibrinogen as a Starting Material for Use in Biomedical and Tissue-Engineered Medical Product Applications标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E1815-18(2023) Standard Test Method for Classification of Film Systems for Industrial Radiography
- ASTM E1820-23b Standard Test Method for Measurement of Fracture Toughness
- ASTM E1822-21 Standard Test Method for Fire Testing of Stacked Chairs
- ASTM E1823-23 Standard Terminology Relating to Fatigue and Fracture Testing
- ASTM E1826-23 Standard Specification for Low Volatile Organic Compound (VOC) Corrosion-Inhibiting Adhesive Primer for Aluminum Alloys to Be Adhesively Bonded in Honeycomb Shelter Panels
- ASTM E1827-22 Standard Test Methods for Determining Airtightness of Buildings Using an Orifice Blower Door
- ASTM E1829-14(2020) Standard Guide for Handling Specimens Prior to Surface Analysis
- ASTM E1832-08(2017) Standard Practice for Describing and Specifying a Direct Current Plasma Atomic Emission Spectrometer
- ASTM E1834-18 Standard Test Method for Analysis of Nickel Alloys by Graphite Furnace Atomic Absorption Spectrometry
- ASTM E1835-14(2022) Standard Test Method for Analysis of Nickel Alloys by Flame Atomic Absorption Spectrometry
- ASTM E1845-23 Standard Practice for Calculating Pavement Macrotexture Mean Profile Depth
- ASTM E1851-21 Standard Test Method for Electromagnetic Shielding Effectiveness of Durable Rigid Wall Relocatable Structures
- ASTM E1854-19 Standard Practice for Ensuring Test Consistency in Neutron-Induced Displacement Damage of Electronic Parts
- ASTM E1856-13(2021) Standard Guide for Evaluating Computerized Data Acquisition Systems Used to Acquire Data from Universal Testing Machines
- ASTM E1857-97(2021) Standard Guide for Selection of Cleaning Techniques for Masonry, Concrete, and Stucco Surfaces