
【国外标准】 Standard Practice for Conducting and Evaluating Laboratory Corrosion Tests in Soils
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This practice provides a controlled corrosive environment that has been utilized to produce relative corrosion information.4.2 The primary application of the data from this practice is to evaluate the performance of metallic materials for use in soil environments.4.3 This practice may not duplicate all field conditions and variables such as stray currents, microbiologically influenced corrosion, non-homogeneous conditions, pollutants in the soil, and long cell corrosion. The reproducibility of results in the practice is highly dependent on the type of specimen tested and the evaluation criteria selected as well as the control of the operating variables. In any testing program, sufficient replicates should be included to establish the variability of the results.4.4 Structures and components may be made of several different metals; therefore, the practice may be used to evaluate galvanic corrosion effects in soils (see Guide G71).4.5 Structures and components may be coated with sacrificial or noble metal coatings, which may be scratched or otherwise rendered discontinuous (for example, no coating on the edges of metal strips cut from a wide sheet). This test is useful to evaluate the effect of defective metallic coatings.4.6 Structures and components may be coated or jacketed with organic materials (for example, paints and plastics), and these coatings and jackets may be rendered discontinuous. The test is useful to evaluate the effect of defective or incompletely covering coatings and jackets.NOTE 1: The corrosivity of soils strongly depends on soluble salt content (related parameters are chemistry and soil resistivity, see Test Methods G57 and G187), acidity or alkalinity (measured by soil pH, see Test Method G51), Temperature, and oxygen content (loose, for example, sand, or compact, for example, clay, soils are extreme examples, see Test Method G200 – oxidation-reduction potential). The manufacturer, supplier, or user, or combination thereof, should establish the nature of the expected soil environment(s) and select the test environment(s) accordingly. Multiple types of soil can be used to determine the effect of this variable.1.1 This practice covers procedures for conducting laboratory corrosion tests in soils to evaluate the potential for corrosion attack on engineering materials in soils. The test is conducted under laboratory ambient temperature unless the effect of temperature is being evaluated. This practice does not include provisions for microbiological influenced corrosion (MIC) testing, nor its influence on results.1.2 This practice covers specimen selection and preparation, test environments, evaluation, and reporting of test results.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM G162-23
标准名称:
Standard Practice for Conducting and Evaluating Laboratory Corrosion Tests in Soils
英文名称:
Standard Practice for Conducting and Evaluating Laboratory Corrosion Tests in Soils标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E3104-17(2023) Standard Specification for Strippable and Removable Coatings to Mitigate Spread of Radioactive Contamination
- ASTM E3107/E3107M-23 Standard Test Method for Resistance to Penetration and Backface Deformation for Ballistic-resistant Torso Body Armor and Shoot Packs
- ASTM E3111/E3111M-22 Standard Test Methods for Ballistic Resistant Head Protection
- ASTM E3115-17(2023) Standard Guide for Capturing Facial Images for Use with Facial Recognition Systems
- ASTM E3116-23 Standard Test Method for Viscosity Measurement Validation of Rotational Viscometers
- ASTM E3118/E3118M-22 Standard Test Methods to Evaluate Seismic Performance of Suspended Ceiling Systems by Full-Scale Dynamic Testing
- ASTM E3119-19 Standard Test Method for Accelerated Aging of Environmentally Controlled Dynamic Glazing
- ASTM E3120-19 Standard Specification for Evaluating Accelerated Aging Performance of Environmentally Controlled Dynamic Glazings
- ASTM E3121/E3121M-17 Standard Test Methods for Field Testing of Anchors in Concrete or Masonry
- ASTM E3130-21 Standard Guide for Developing Cost-Effective Community Resilience Strategies
- ASTM E3131-17 Standard Specification for Nucleic Acid-Based Systems for Bacterial Pathogen Screening of Suspicious Visible Powders
- ASTM E3132/E3132M-17 Standard Practice for Evaluating Response Robot Logistics: System Configuration
- ASTM E3134-20 Standard Specification for Transportation Tunnel Structural Components and Passive Fire Protection Systems
- ASTM E3137/E3137M-18 Standard Specification for Heat Meter Instrumentation
- ASTM E314-16 Standard Test Methods for Determination of Manganese in Iron Ores by Pyrophosphate Potentiometry and Periodate Spectrophotometry Techniques