
【国外标准】 Standard Test Method for Evaluating Lubricity of Diesel Fuels by the High-Frequency Reciprocating Rig (HFRR) by Visual Observation
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Diesel fuel injection equipment has some reliance on lubricating properties of the diesel fuel. Shortened life of engine components, such as diesel fuel injection pumps and injectors, has sometimes been ascribed to lack of lubricity in a diesel fuel.5.2 The trend of HFRR test results to diesel injection system pump component distress due to wear has been demonstrated in pump rig tests for some fuel/hardware combinations where boundary lubrication is believed to be a factor in the operation of the component.55.3 The wear scar generated in the HFRR test is sensitive to contamination of the fluids and test materials, the temperature of the test fuel, and the ambient relative humidity. Lubricity evaluations are also sensitive to trace contaminants acquired during test fuel sampling and storage.5.4 The HFRR and Scuffing Load Ball on Cylinder Lubricity Evaluator (SLBOCLE, Test Method D6078) are two methods for evaluating diesel fuel lubricity. No absolute correlation has been developed between the two test methods.5.5 The HFRR may be used to evaluate the relative effectiveness of diesel fuels for preventing wear under the prescribed test conditions. Correlation of HFRR test results with field performance of diesel fuel injection systems has not yet been determined.5.6 This test method is designed to evaluate boundary lubrication properties. While viscosity effects on lubricity in this test method are not totally eliminated, they are minimized.1.1 This test method covers the evaluation of the lubricity of diesel fuels using a high-frequency reciprocating rig (HFRR).1.2 This test method is applicable to middle distillate fuels, such as Grades No. 1-D S15, S500, and S5000, and Grades No. 2-D S15, S500, and S5000 diesel fuels, in accordance with Specification D975; and other similar petroleum-based fuels which can be used in diesel engines. This test method also is applicable to biodiesel blends. B5 was included in the round robin program that determined the precision statement.NOTE 1: It is not known that this test method will predict the performance of all additive/fuel combinations. Additional work is underway to establish this correlation and future revisions of this test method may be necessary once this work is complete.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7688-18
标准名称:
Standard Test Method for Evaluating Lubricity of Diesel Fuels by the High-Frequency Reciprocating Rig (HFRR) by Visual Observation
英文名称:
Standard Test Method for Evaluating Lubricity of Diesel Fuels by the High-Frequency Reciprocating Rig (HFRR) by Visual Observation标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F2044-09(2019)e1 Standard Specification for Liquid Level Indicating Equipment, Electrical
- ASTM F2046-00(2022) Standard Specification for Tachometers, Various
- ASTM F2049-11(2017) Standard Safety Performance Specification for Fences/Barriers for Public, Commercial, and Multi-Family Residential Use Outdoor Play Areas
- ASTM F2050-19 Standard Consumer Safety Specification for Hand-Held Infant Carriers
- ASTM F2051-00(2022) Standard Specification for Implantable Saline-Filled Breast Prostheses
- ASTM F2054/F2054M-13(2020) Standard Test Method for Burst Testing of Flexible Package Seals Using Internal Air Pressurization Within Restraining Plates
- ASTM F2055-17(2021) Standard Test Method for Size and Squareness of Resilient Floor Tile by Dial Gauge Method
- ASTM F2059-21 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask
- ASTM F2061-17 Standard Practice for Chemical Protective Clothing: Wearing, Care, and Maintenance Instructions
- ASTM F2062-00(2018) Standard Specification for Square Drive Interconnections on Surgical Instruments
- ASTM F2064-17 Standard Guide for Characterization and Testing of Alginates as Starting Materials Intended for Use in Biomedical and Tissue Engineered Medical Product Applications
- ASTM F2075-20 Standard Specification for Engineered Wood Fiber for Use as a Playground Safety Surface Under and Around Playground Equipment
- ASTM F2076-01(2022) Standard Practice for Communicating an EMS Patient Report to Receiving Medical Facilities
- ASTM F2080-23 Standard Specification for Cold-Expansion Fittings with Metal Compression-Sleeves for Crosslinked Polyethylene (PEX) Pipe and SDR9 Polyethylene of Raised Temperature (PE-RT) Pipe
- ASTM F2082/F2082M-23 Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery