
【国外标准】 Standard Test Method for Determining Pressure Decay of Inflatable Restraint Cushions
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method may be used for product development and design, production validation, manufacturing process control, lot acceptance, or for a combination thereof.5.2 The rate of inflation in this method does not attempt to mimic that of an actual cushion deployment, nor is it intended to subject the cushion to the dynamic loads, stress, and temperatures during such an event. It is also recognized that the compressed air used for this tests may not leak through the cushion at the same rate as the gas or mixture of gasses typically used in cushion inflators. Rather this method is intended to give a relative indication of the pressure holding ability of the cushion.5.3 The internal volume and internal design of cushions varies greatly. This test method is most useful when comparing data from cushions of the same design and volume. This test method does not provide any data concerning the volume of gas leaking from the bag. At certain higher levels of the initial internal pressure, this test method will irreversibly damage the cushion and change its leakage properties for future testing or for commercial use. The damage to the bag is dependent on the design or shape of a specific bag and the type of coating applied. It is the responsibility of the supplier and/or purchaser to determine if the parameters under which a cushion is tested will be destructive and render the cushion unfit for future use5.4 Within the limits of variance expressed in Section 12, this test method is useful for design and production validation and may be suitable for incorporation in a cushion specification or for lot acceptance testing of commercial shipments.1.1 This test method is intended to determine the ability of an inflatable restraint cushion to retain air pressure at elevated pressures for a specified time interval.1.2 Procedures and apparatus other than those stated in this test method may be used by agreement of purchaser and supplier, provided the specific deviations from the standard acknowledged in the report.1.3 The results of this test method should not be used to predict the actual internal pressure decay of a cushion during a deployment.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7559/D7559M-09(2020)
标准名称:
Standard Test Method for Determining Pressure Decay of Inflatable Restraint Cushions
英文名称:
Standard Test Method for Determining Pressure Decay of Inflatable Restraint Cushions标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D7558-09(2019) Standard Test Method for Colorimetric/Spectrophotometric Procedure to Quantify Extractable Chemical Dialkyldithiocarbamate, Thiuram, and Mercaptobenzothiazole Accelerators in Natural Rubber Latex and Nitrile Gloves
- 下一篇: ASTM D756-93 Practice for Determination of Weight and Shape Changes of Plastics Under Accelerated Service Conditions (Withdrawn 1998)
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation