
【国外标准】 Standard Test Method for Determining the Tribological Behavior and the Relative Lifetime of a Fluid Lubricant using the Spiral Orbit Tribometer
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Relevance of the Spiral Orbit Tribometer (SOT)—The SOT was designed to evaluate the relative degradation rates of liquid lubricants in a contact environment similar to that in an angular contact bearing operating in the boundary lubrication regime. It functions as a screening device to quickly select the lubricants, evaluate the ability of various components of a lubricant (base oil, thickener, or additive) to lubricate a contact in rolling, pivoting, and sliding conditions simultaneously, and study their chemical decomposition if necessary. The SOT provides a means to study the tribological behavior of oils and greases during operation, while they undergo changes as a function of typical parameters encountered in the lubrication field (temperature, environment, materials used, load applied, and speed). Test conclusion is defined to be when a friction coefficient limit (typically an increase of 0.1 above the steady state value) is surpassed. Normalized lubricant lifetime is then defined as the number of orbits completed divided by the initial amount of lubricant used (in μg). The SOT was initially developed to evaluate lubricants for space applications, but is also relevant for conventional environments. Some results in vacuum are presented (Fig. 1). At this time, no data for tests in ambient conditions have been published (see Fig. 2). The user of this test method should determine to their own satisfaction whether results of this test procedure correlate with field performance or other bench test procedures.FIG. 1 Relative lifetimes of three typical space lubricants at 23°C in vacuum on 52100 steelPepper, S.V., Kingsbury, E.P., “Spiral Orbit Tribometry – Part II: Evaluation of Three Liquid Lubricants in Vacuum”, Tribo. Trans., V 46, 1, pp 65-69, 2003FIG. 2 Comparison between full scale bearing tests** and SOT data at 23°C on 440C steel.Bazinet, D.G., Espinosa, M.A., Loewenthal, S.H., Gschwender, L., Jones, W.R., Jr., Predmore, R.E., “Life of Scanner Bearings with Four Space Liquid Lubricants”, Proc. 37th Aerospace Mech. Symp., Johnson Space Center, May 19-21, 20041.1 This test method covers the quantitative determination of the friction coefficient and the lifetime of oils and greases, when tested on a standard specimen under specified conditions of preparation, speed, Hertzian stress, materials, temperature, and atmosphere, by means of the Spiral Orbit Tribometer (SOT). This test method is intended primarily as an evaluation of the lifetimes of fluid lubricants under vacuum and ambient conditions.1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2661-07(2022)
标准名称:
Standard Test Method for Determining the Tribological Behavior and the Relative Lifetime of a Fluid Lubricant using the Spiral Orbit Tribometer
英文名称:
Standard Test Method for Determining the Tribological Behavior and the Relative Lifetime of a Fluid Lubricant using the Spiral Orbit Tribometer标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F2044-09(2019)e1 Standard Specification for Liquid Level Indicating Equipment, Electrical
- ASTM F2046-00(2022) Standard Specification for Tachometers, Various
- ASTM F2049-11(2017) Standard Safety Performance Specification for Fences/Barriers for Public, Commercial, and Multi-Family Residential Use Outdoor Play Areas
- ASTM F2050-19 Standard Consumer Safety Specification for Hand-Held Infant Carriers
- ASTM F2051-00(2022) Standard Specification for Implantable Saline-Filled Breast Prostheses
- ASTM F2054/F2054M-13(2020) Standard Test Method for Burst Testing of Flexible Package Seals Using Internal Air Pressurization Within Restraining Plates
- ASTM F2055-17(2021) Standard Test Method for Size and Squareness of Resilient Floor Tile by Dial Gauge Method
- ASTM F2059-21 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask
- ASTM F2061-17 Standard Practice for Chemical Protective Clothing: Wearing, Care, and Maintenance Instructions
- ASTM F2062-00(2018) Standard Specification for Square Drive Interconnections on Surgical Instruments
- ASTM F2064-17 Standard Guide for Characterization and Testing of Alginates as Starting Materials Intended for Use in Biomedical and Tissue Engineered Medical Product Applications
- ASTM F2075-20 Standard Specification for Engineered Wood Fiber for Use as a Playground Safety Surface Under and Around Playground Equipment
- ASTM F2076-01(2022) Standard Practice for Communicating an EMS Patient Report to Receiving Medical Facilities
- ASTM F2080-23 Standard Specification for Cold-Expansion Fittings with Metal Compression-Sleeves for Crosslinked Polyethylene (PEX) Pipe and SDR9 Polyethylene of Raised Temperature (PE-RT) Pipe
- ASTM F2082/F2082M-23 Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery