
【国外标准】 Standard Test Method for Determination of Elements in Insulating Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method covers the rapid determination of 12 elements in insulating oils, and it provides rapid screening of used oils for indications of wear. Test times approximate several minutes per test specimen, and detectability is in the 10 μg/kg through 100 μg/kg range.5.2 This test method can be used to monitor equipment condition and help to define when corrective action is needed. It can also be used to detect contamination such as from silicone fluids (via Silicon) or from dirt (via Silicon and Aluminum).5.3 This test method can be used to indicate the efficiency of reclaiming used insulating oil.1.1 This test method describes the determination of metals and contaminants in insulating oils by inductively coupled plasma atomic emission spectrometry (ICP-AES). The specific elements are listed in Table 1. This test method is similar to Test Method D5185, but differs in methodology, which results in the greater sensitivity required for insulating oil applications.1.2 This test method uses oil-soluble metals for calibration and does not purport to quantitatively determine insoluble particulates. Analytical results are particle size dependent, and low results are obtained for particles larger than several micrometers.21.3 This test method determines the dissolved metals (which can originate from overheating or arcing, or both) and a portion of the particulate metals (which generally originate from a wear mechanism). While this ICP method detects nearly all particles less than several micrometers, the response of larger particles decreases with increasing particle size because larger particles are less likely to make it through the nebulizer and into the sample excitation zone.1.4 This test method includes an option for filtering the oil sample for those users who wish to separately determine dissolved metals and particulate metals (and hence, total metals).1.5 Elements present at concentrations above the upper limit of the calibration curves can be determined with additional, appropriate dilutions and with no degradation of precision.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7151-15(2023)
标准名称:
Standard Test Method for Determination of Elements in Insulating Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)
英文名称:
Standard Test Method for Determination of Elements in Insulating Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E1815-18(2023) Standard Test Method for Classification of Film Systems for Industrial Radiography
- ASTM E1820-23b Standard Test Method for Measurement of Fracture Toughness
- ASTM E1822-21 Standard Test Method for Fire Testing of Stacked Chairs
- ASTM E1823-23 Standard Terminology Relating to Fatigue and Fracture Testing
- ASTM E1826-23 Standard Specification for Low Volatile Organic Compound (VOC) Corrosion-Inhibiting Adhesive Primer for Aluminum Alloys to Be Adhesively Bonded in Honeycomb Shelter Panels
- ASTM E1827-22 Standard Test Methods for Determining Airtightness of Buildings Using an Orifice Blower Door
- ASTM E1829-14(2020) Standard Guide for Handling Specimens Prior to Surface Analysis
- ASTM E1832-08(2017) Standard Practice for Describing and Specifying a Direct Current Plasma Atomic Emission Spectrometer
- ASTM E1834-18 Standard Test Method for Analysis of Nickel Alloys by Graphite Furnace Atomic Absorption Spectrometry
- ASTM E1835-14(2022) Standard Test Method for Analysis of Nickel Alloys by Flame Atomic Absorption Spectrometry
- ASTM E1845-23 Standard Practice for Calculating Pavement Macrotexture Mean Profile Depth
- ASTM E1851-21 Standard Test Method for Electromagnetic Shielding Effectiveness of Durable Rigid Wall Relocatable Structures
- ASTM E1854-19 Standard Practice for Ensuring Test Consistency in Neutron-Induced Displacement Damage of Electronic Parts
- ASTM E1856-13(2021) Standard Guide for Evaluating Computerized Data Acquisition Systems Used to Acquire Data from Universal Testing Machines
- ASTM E1857-97(2021) Standard Guide for Selection of Cleaning Techniques for Masonry, Concrete, and Stucco Surfaces