
【国外标准】 Standard Practice for Minimum Criteria for Comparing Whole Building Life Cycle Assessments for Use with Building Codes, Standards, and Rating Systems
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This practice provides criteria that building design teams shall use to compare the environmental impacts associated with a reference building design and a final building design, including additions to existing buildings where applicable.5.2 This practice deals specifically with material selection for initial construction, including associated maintenance and replacement cycles over an assumed service life, taking operating energy use into account if required or explicitly allowed under the applicable code, standard, or rating system.1.1 This practice provides criteria to be applied irrespective of the assessment (LCA) tool that is used when LCA is undertaken at the whole building level to compare a final whole building design to a reference building design.1.2 The purpose of this practice is to support the use of whole building Life Cycle Assessment (LCA) in building codes, standards, and building rating systems by ensuring that comparative assessments of final whole building designs relative to reference building designs take account of the relevant building features, life cycle stages, and related activities in similar fashion for both the reference and final building designs of the same building.1.3 The criteria do not deal with building occupant behavior, possible future changes in building function, building rehabilitation or retrofit, or other matters that cannot be foreseen or reasonably estimated at the design or permitting stage, or both where this practice applies.1.4 Only environmental impacts and aspects of sustainability are addressed in this practice. The social and economic impacts and aspects of sustainability are not addressed in this practice.1.5 This practice does not deal with basic LCA methodology, calculation methods or related matters that are covered in cited international standards.1.6 This practice does not supersede or modify existing ISO standards for the application of LCA at the product level, nor does it address any of the following related applications:1.6.1 Aggregation of building products Environmental Product Declarations (EPD) at the whole building level;1.6.2 Rules for applying EPDs in a building code, standard, or rating system; and1.6.3 Comparability of building product EPDs.NOTE 1: ISO 14025 and ISO 21930 provide guidance on use and comparability of building products EPDs.1.7 This practice does not specify the impact categories or sustainability aspects to be addressed in building codes, standards, or building rating systems and users of this practice conform to the impact category requirements specified in the applicable code, standard, or rating system.1.8 The text of this standard contains notes that provide explanatory material. These notes shall not be considered as requirements of the standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2921-22
标准名称:
Standard Practice for Minimum Criteria for Comparing Whole Building Life Cycle Assessments for Use with Building Codes, Standards, and Rating Systems
英文名称:
Standard Practice for Minimum Criteria for Comparing Whole Building Life Cycle Assessments for Use with Building Codes, Standards, and Rating Systems标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F2044-09(2019)e1 Standard Specification for Liquid Level Indicating Equipment, Electrical
- ASTM F2046-00(2022) Standard Specification for Tachometers, Various
- ASTM F2049-11(2017) Standard Safety Performance Specification for Fences/Barriers for Public, Commercial, and Multi-Family Residential Use Outdoor Play Areas
- ASTM F2050-19 Standard Consumer Safety Specification for Hand-Held Infant Carriers
- ASTM F2051-00(2022) Standard Specification for Implantable Saline-Filled Breast Prostheses
- ASTM F2054/F2054M-13(2020) Standard Test Method for Burst Testing of Flexible Package Seals Using Internal Air Pressurization Within Restraining Plates
- ASTM F2055-17(2021) Standard Test Method for Size and Squareness of Resilient Floor Tile by Dial Gauge Method
- ASTM F2059-21 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask
- ASTM F2061-17 Standard Practice for Chemical Protective Clothing: Wearing, Care, and Maintenance Instructions
- ASTM F2062-00(2018) Standard Specification for Square Drive Interconnections on Surgical Instruments
- ASTM F2064-17 Standard Guide for Characterization and Testing of Alginates as Starting Materials Intended for Use in Biomedical and Tissue Engineered Medical Product Applications
- ASTM F2075-20 Standard Specification for Engineered Wood Fiber for Use as a Playground Safety Surface Under and Around Playground Equipment
- ASTM F2076-01(2022) Standard Practice for Communicating an EMS Patient Report to Receiving Medical Facilities
- ASTM F2080-23 Standard Specification for Cold-Expansion Fittings with Metal Compression-Sleeves for Crosslinked Polyethylene (PEX) Pipe and SDR9 Polyethylene of Raised Temperature (PE-RT) Pipe
- ASTM F2082/F2082M-23 Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery