
【国外标准】 Standard Test Method for Determination of Contamination Level of Fatty Acid Methyl Esters in Middle Distillate and Residual Fuels Using Flow Analysis by Fourier Transform Infrared Spectroscopy—Rapid Screening Method
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The present and growing international governmental requirements to add Fatty Acid Methyl Esters (FAME) to diesel fuel has had the unintended side-effect of leading to potential FAME contamination of fuels in multi-fuel transport facilities such as cargo tankers and pipelines, and industry wide concerns. This has led to a requirement to measure contamination levels in diesel and other fuels to assist custody transfer issues.5.2 Analytical methods have been developed with the capability of measuring down to <5 mg/kg levels of FAME in aviation turbine fuel (AVTUR), however these are complex, and require specialized personnel and laboratory facilities. This Rapid Screening method has been developed for use in the supply chain by non-specialized personnel to cover the range of 20 mg/kg to 500 000 mg/kg (0.002 % to 50 %).5.3 A similar procedure, Test Method D7797, is available for AVTUR in the range 10 mg/kg to 150 mg/kg. Test Method D7797 uses the same apparatus, with a specific model developed for AVTUR.1.1 This test method specifies a rapid screening method using flow analysis by Fourier Transform Infrared (FA-FTIR) spectroscopy with partial least squares (PLS) processing for the quantitative determination of the fatty acid methyl ester (FAME) contamination of middle distillates, in the range of 20 mg/kg to 1000 mg/kg, and of middle distillates and residual fuels, following dilution, for levels above 0.1 %.NOTE 1: Annex A2 describes a dilution procedure to significantly expand the measurement range above 1000 mg/kg for distillates and to enable measurement of residual oilsNOTE 2: This test method detects all FAME components, with peak IR absorbance at approximately 1749 cm-1 and C8 to C22 molecules, as specified in standards such as D6751 and EN 14214. The accuracy of the test method is based on the molecular mass of C16 to C18 FAME species; the presence of other FAME species with different molecular masses could affect the accuracy.NOTE 3: Additives such as antistatic agents, antioxidants, and corrosion inhibitors are measured with the FAME by the FTIR spectrometer. However any potential interference effects of these additives are eliminated by the flow analysis processing.NOTE 4: The scope of this test method does not include aviation turbine fuel which is addressed by Test Method D7797.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7963-22
标准名称:
Standard Test Method for Determination of Contamination Level of Fatty Acid Methyl Esters in Middle Distillate and Residual Fuels Using Flow Analysis by Fourier Transform Infrared Spectroscopy—Rapid Screening Method
英文名称:
Standard Test Method for Determination of Contamination Level of Fatty Acid Methyl Esters in Middle Distillate and Residual Fuels Using Flow Analysis by Fourier Transform Infrared Spectroscopy—Rapid Screening Method标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation