
【国外标准】 Standard Guide for Nondestructive Evaluation of Nuclear Grade Graphite
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Nuclear grade graphite is a composite material made from petroleum or a coal-tar-based coke and a pitch binder. Manufacturing graphite is an iterative process of baking and pitch impregnation of a formed billet prior to final graphitization, which occurs at temperatures greater than 2500 °C. The impregnation and rebake step is repeated several times until the desired product density is obtained. Integral to this process is the use of isotropic cokes and a forming process (that is, isostatically molded, vibrationally molded, or extruded) that is intended to obtain an isotropic or near isotropic material. However, the source, size, and blend of the starting materials as well as the forming process of the green billet will impart unique material properties as well as variations within the final product. There will be density variations from the billet surface inward and different physical properties with and transverse to the grain direction. Material variations are expected within individual billets as well as billet-to-billet and lot-to-lot. Other manufacturing defects of interest include large pores, inclusions, and cracks. In addition to the material variation inherent to the manufacturing process, graphite will experience changes in volume, mechanical strength, and thermal properties while in service in a nuclear reactor along with the possibility of cracking due to stress and oxidation resulting from constituents in the gas coolant or oxygen ingress. Therefore, there is the recognized need to be able to nondestructively characterize a variety of material attributes such as uniformity, isotropy, and porosity distributions as a means to assure consistent stock material. This need also includes the ability to detect isolated defects such as cracks, large pores and inclusions, or distributed material damage such as material loss due to oxidation. The use of this guide is to acquire a basic understanding of the unique attributes of nuclear grade graphite and its application that either permits or hinders the use of conventional eddy current, ultrasonic, or X-ray inspection technologies.1.1 This guide provides general tutorial information regarding the application of conventional nondestructive evaluation technologies (NDE) to nuclear grade graphite. An introduction will be provided to the characteristics of graphite that defines the inspection technologies that can be applied and the limitations imposed by the microstructure. This guide does not provide specific techniques or acceptance criteria for end-user examinations but is intended to provide information that will assist in identifying and developing suitable approaches.1.2 The values stated in SI units are to be regarded as the standard.1.2.1 Exception—Alternative units provided in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8093-19
标准名称:
Standard Guide for Nondestructive Evaluation of Nuclear Grade Graphite
英文名称:
Standard Guide for Nondestructive Evaluation of Nuclear Grade Graphite标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3448-20 Standard Guide for Clinical Outcomes for Clinical Trials and/or Clinical Registries for Hip Reconstructive Surgery
- ASTM F3449-20 Standard Guide for Inclusion of Cyber Risks into Maritime Safety Management Systems in Accordance with IMO Resolution MSC.428(98)―Cyber Risks and Challenges
- ASTM F3450-20 Standard Guide for Flight Hazard and Surveillance Systems Personnel Certification
- ASTM F3455/F3455M-22 Standard Practice for Establishing the Minimum- and Maximum-Width Configurations for Crash Testing of Exceptionally Long Variable-Width Vehicle Barriers
- ASTM F3457-20 Standard Guide for Aircraft Certification Education Standards for Engineers and Professionals in Aerospace Industry
- ASTM F3459-21 Standard Specification for Rigid Poly Vinyl Chloride (PVC) Exterior Profiles Used for Sound Walls
- ASTM F3460-21 Standard Test Method for Seam Measurement Procedure for Baseballs and Softballs
- ASTM F3463-21 Standard Guide for Ensuring the Safety of Connected Consumer Products
- ASTM F3478-20 Standard Practice for Development of a Durability and Reliability Flight Demonstration Program for Low-Risk Unmanned Aircraft Systems (UAS) under FAA Oversight
- ASTM F3487-20 Standard Guide for Assessing the Service Life of a Brush Part Intended to Clean a Medical Device
- ASTM F3489-23 Standard Guide for Additive Manufacturing of Polymers — Material Extrusion — Recommendation for Material Handling and Evaluation of Static Mechanical Properties
- ASTM F3491-21 Standard Practice for Enhanced Indication Methods in Aircraft
- ASTM F3492-21 Standard Consumer Safety Specification for Child Safety Locks and Latches for Use with Cabinet Doors and Drawers
- ASTM F3495-23 Standard Test Methods for Determining the Static Failure Load of Ceramic Knee Femoral Components
- ASTM F3502-23a Standard Specification for Barrier Face Coverings