
【国外标准】 Standard Practice for Calculation of Dose Equivalent Xenon (DEX) for Radioactive Xenon Fission Products in Reactor Coolant
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Each power reactor has a specific DEX value that is their technical requirement limit. These values may vary from about 200 to about 900 μCi/g based upon the height of their plant vent, the location of the site boundary, the calculated reactor coolant activity for a condition of 1 % fuel defects, and general atmospheric modeling that is ascribed to that particular plant site. Should the DEX measured activity exceed the technical requirement limit, the plant enters an LCO requiring action on plant operation by the operators.5.2 The determination of DEX is performed in a similar manner to that used in determining DEI, except that the calculation of DEX is based on the acute dose to the whole body and considers the noble gases 85mKr, 85Kr, 87Kr, 88Kr, 131mXe, 133mXe, 133Xe, 135mXe, 135Xe, and 138Xe which are significant in terms of contribution to whole body dose.5.3 It is important to note that only fission gases are included in this calculation, and only the ones noted in Table 1. For example 83mKr is not included even though its half-life is 1.86 hours. The reason for this is that this radionuclide cannot be easily determined by gamma spectrometry (low energy X-rays at 32 and 9 keV) and its dose consequence is vanishingly small compared to the other, more prevalent krypton radionuclides.5.4 Activity from 41Ar, 19F, 16N, and 11C, all of which predominantly will be in gaseous forms in the RCS, are not included in this calculation.5.5 If a specific noble-gas radionuclide is not detected, it should be assumed to be present at the minimum-detectable activity. The determination of dose-equivalent Xe-133 shall be performed using effective dose-conversion factors for air submersion listed in Table III.1 of EPA Federal Guidance Report No. 12,3 or the average gamma-disintegration energies as provided in ICRP Publication 38 (“Radionuclide Transformations”) or similar source.1.1 This practice applies to the calculation of the dose equivalent to 133Xe in the reactor coolant of nuclear power reactors resulting from the radioactivity of all noble gas fission products.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7727-21
标准名称:
Standard Practice for Calculation of Dose Equivalent Xenon (DEX) for Radioactive Xenon Fission Products in Reactor Coolant
英文名称:
Standard Practice for Calculation of Dose Equivalent Xenon (DEX) for Radioactive Xenon Fission Products in Reactor Coolant标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F2044-09(2019)e1 Standard Specification for Liquid Level Indicating Equipment, Electrical
- ASTM F2046-00(2022) Standard Specification for Tachometers, Various
- ASTM F2049-11(2017) Standard Safety Performance Specification for Fences/Barriers for Public, Commercial, and Multi-Family Residential Use Outdoor Play Areas
- ASTM F2050-19 Standard Consumer Safety Specification for Hand-Held Infant Carriers
- ASTM F2051-00(2022) Standard Specification for Implantable Saline-Filled Breast Prostheses
- ASTM F2054/F2054M-13(2020) Standard Test Method for Burst Testing of Flexible Package Seals Using Internal Air Pressurization Within Restraining Plates
- ASTM F2055-17(2021) Standard Test Method for Size and Squareness of Resilient Floor Tile by Dial Gauge Method
- ASTM F2059-21 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask
- ASTM F2061-17 Standard Practice for Chemical Protective Clothing: Wearing, Care, and Maintenance Instructions
- ASTM F2062-00(2018) Standard Specification for Square Drive Interconnections on Surgical Instruments
- ASTM F2064-17 Standard Guide for Characterization and Testing of Alginates as Starting Materials Intended for Use in Biomedical and Tissue Engineered Medical Product Applications
- ASTM F2075-20 Standard Specification for Engineered Wood Fiber for Use as a Playground Safety Surface Under and Around Playground Equipment
- ASTM F2076-01(2022) Standard Practice for Communicating an EMS Patient Report to Receiving Medical Facilities
- ASTM F2080-23 Standard Specification for Cold-Expansion Fittings with Metal Compression-Sleeves for Crosslinked Polyethylene (PEX) Pipe and SDR9 Polyethylene of Raised Temperature (PE-RT) Pipe
- ASTM F2082/F2082M-23 Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery