
【国外标准】 Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 These test methods describe laboratory tests for comparing the resistance of stainless steels and related alloys to the initiation of pitting and crevice corrosion. The results may be used for ranking alloys in order of increasing resistance to pitting and crevice corrosion initiation under the specific conditions of these methods. Methods A and B are designed to cause the breakdown of Type 304 at room temperature.4.2 The use of ferric chloride solutions is justified because it is related to, but not the same as, that within a pit or crevice site on a ferrous alloy in chloride bearing environments (1, 2).3 The presence of an inert crevice former of consistent dimension on a surface is regarded as sufficient specification of crevice geometry to assess relative crevice corrosion susceptibility.4.3 The relative performance of alloys in ferric chloride solution tests has been correlated to performance in certain real environments, such as natural seawater at ambient temperature (3) and strongly oxidizing, low pH, chloride containing environments (4), but several exceptions have been reported (4-7).4.4 Methods A, B, C, D, E, and F can be used to rank the relative resistance of stainless steels and nickel base alloys to pitting and crevice corrosion in chloride-containing environments. No statement can be made about resistance of alloys in environments that do not contain chlorides.4.4.1 Methods A, B, C, D, E, and F were designed to accelerate the time to initiate localized corrosion relative to most natural environments. Consequently, the degree of corrosion damage that occurs during testing will generally be greater than that in natural environments in any similar time period.4.4.2 No statement regarding localized corrosion propagation can be made based on the results of Methods A, B, C, D, E, or F.4.4.3 Surface preparation can significantly influence results. Therefore, grinding and pickling of the specimen will mean that the results may not be representative of the conditions of the actual piece from which the sample was taken.NOTE 1: Grinding or pickling on stainless steel surfaces may destroy the passive layer. A 24 h air passivation after grinding or pickling is sufficient to minimize these differences (8).4.4.4 The procedures in Methods C, D, E, and F for measuring critical pitting corrosion temperature and critical crevice corrosion temperature have no bias because the values are defined only in terms of these test methods.NOTE 2: When testing as-welded, cylindrical, or other non-flat samples, the standard crevice formers will not provide uniform contact. The use of contoured crevice formers may be considered in such situations, but the use of a pitting test (Practices A, C, or E) should be considered.1.1 These test methods cover procedures for the determination of the resistance of stainless steels and related alloys to pitting and crevice corrosion (see Terminology G193) when exposed to oxidizing chloride environments. Six procedures are described and identified as Methods A, B, C, D, E, and F.1.1.1 Method A—Ferric chloride pitting test.1.1.2 Method B—Ferric chloride crevice test.1.1.3 Method C—Critical pitting temperature test for nickel-base and chromium-bearing alloys.1.1.4 Method D—Critical crevice temperature test for nickel-base and chromium-bearing alloys.1.1.5 Method E—Critical pitting temperature test for stainless steels.1.1.6 Method F—Critical crevice temperature test for stainless steels.1.2 Method A is designed to determine the relative pitting resistance of stainless steels and nickel-base, chromium-bearing alloys, whereas Method B can be used for determining both the pitting and crevice corrosion resistance of these alloys. Methods C, D, E, and F allow for a ranking of alloys by minimum (critical) temperature to cause initiation of pitting corrosion and crevice corrosion, respectively, of stainless steels, nickel-base and chromium-bearing alloys in a standard ferric chloride solution.1.3 These tests may be used to determine the effects of alloying additives, heat treatment, and surface finishes on pitting and crevice corrosion resistance.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM G48-11(2020)e1
标准名称:
Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution
英文名称:
Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation