
【国外标准】 Standard Specification for Coatings of Cadmium Mechanically Deposited
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
This specification covers the requirements for coating of cadmium mechanically deposited on metal products. Cadmium coatings shall classified on the basis of thickness, as follows: Class 12; Class 8; and Class 5. Cadmium coatings shall be identified as Type I and Type II on the basis of supplementary treatment required. The coating shall be uniform in appearance and free of blisters, pits, nodules, flaking, and other defects that can adversely affect the function of the coating. All steel parts that have ultimate tensile strength and that contains tensile stresses caused by machining, grinding, straightening, or cold-forming operation shall be given a stress relief heat treatment prior to cleaning and metal deposition. The minimum hours to failure (appearance of white corrosion products and red rust for mechanically deposited cadmium coatings on iron and steel) of Type I and Type II coatings shall be indicated to guarantee satisfactory performance. The test specimen shall undergo adhesion, corrosion resistance, and appearance tests. The thickness of the coating shall be determined by the microscopical method, or the magnetic method, or the beta backscatter method, as applicable.1.1 This specification covers the requirements for a coating of cadmium mechanically deposited on metal products. The coating is provided in various thicknesses up to and including 12 μm.1.2 Mechanical deposition greatly reduces the risk of hydrogen embrittlement and is suitable for coating bores and recesses in many parts that cannot be conveniently electroplated (see Appendix X3).1.3 Cadmium coatings are usually applied to provide engineering properties and corrosion resistance. The performance of a cadmium coating depends largely on its thickness and the kind of environment to which it is exposed. Without proof of satisfactory correlation, accelerated tests such as the salt spray (fog) test cannot be relied upon to predict performance in other environments, nor will these serve as comparative measures of the corrosion resistance afforded by coatings of different metals. Thus, although there is a marked superiority of cadmium coatings over zinc coatings of equal thickness in the salt spray test, this is often not the case under conditions of use, so that further testing in the service environment should be conducted.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see 1.5 and 1.6.1.5 Warning—Cadmium is toxic and must not be used in a coating for articles that can come into contact with food or beverages, or for dental or other equipment that can be inserted into the mouth. Consult appropriate agencies for regulations in this connection.1.6 Warning—Because of the toxicity of cadmium vapors and cadmium oxide fumes, cadmium-coated articles must not be used at temperatures of 320 °C and above. They must not be welded, spot-welded, soldered, or otherwise strongly heated without adequate ventilation that will efficiently remove all toxic fumes.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM B696-00(2023)
标准名称:
Standard Specification for Coatings of Cadmium Mechanically Deposited
英文名称:
Standard Specification for Coatings of Cadmium Mechanically Deposited标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D6047-17(2021) Standard Test Methods for Rubber, Raw—Determination of 5-Ethylidenenorbornene (ENB) or Dicyclopentadiene (DCPD) in Ethylene-Propylene-Diene (EPDM) Terpolymers
- ASTM D6049-03(2022) Standard Test Method for Rubber Property—Measurement of the Viscous and Elastic Behavior of Unvulcanized Raw Rubbers and Rubber Compounds by Compression Between Parallel Plates
- ASTM D6055-96(2019) Standard Test Methods for Mechanical Handling of Unitized Loads and Large Shipping Cases and Crates
- ASTM D6058-96(2016) Standard Practice for Determining Concentration of Airborne Single-Crystal Ceramic Whiskers in the Workplace Environment
- ASTM D6062-19 Standard Guide for Personal Samplers of Health-Related Aerosol Fractions
- ASTM D6063-11(2018) Standard Guide for Sampling of Drums and Similar Containers by Field Personnel
- ASTM D6064-11(2022) Standard Specification for HFC-227ea, 1,1,1,2,3,3,3-Heptafluoropropane (CF3CHFCF3)
- ASTM D6067/D6067M-17 Standard Practice for Using the Electronic Piezocone Penetrometer Tests for Environmental Site Characterization and Estimation of Hydraulic Conductivity
- ASTM D6068-10(2018) Standard Test Method for Determining J-R Curves of Plastic Materials
- ASTM D607-82(2019) Standard Specification for Wet Ground Mica Pigments
- ASTM D6071-14(2022) Standard Test Method for Low Level Sodium in High Purity Water by Graphite Furnace Atomic Absorption Spectroscopy
- ASTM D6073-08a(2020) Standard Test Method for Relative Setting of Heatset Printing Inks
- ASTM D6074-15(2022) Standard Guide for Characterizing Hydrocarbon Lubricant Base Oils
- ASTM D6076-18(2023) Standard Test Method for Shrinkage Temperature of Leather
- ASTM D6077-16(2023) Standard Test Method for Trapezoid Tearing Strength of Leather