
【国外标准】 Standard Specification for Mineral Fiber Block and Board Thermal Insulation
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
This specification covers mineral fiber block and board thermal insulation. Mineral fiber board insulation covered by this specification shall be classified into types and categories; category 1 - no compressive resistance properties are required, category 2 - minimum compressive resistance properties are required, type V, grade A - requires no heat-up schedule, type V, grade B - heat-up schedule is required. Mineral fiber block and semi-rigid and rigid board insulation shall be composed of rock, slag, or glass processed from the molten state into fibrous form and bonded with organic or inorganic binders or both. A detectable odor of objectionable nature recorded by more than two of five panel members shall constitute rejection. When tested and evaluated, the corrosion resulting from insulation in contact with steel plates shall be judged to be no greater than for comparative plates in contact with sterile cotton. When tested and evaluated at its delivered thickness, all mineral fiber (rock, slag, and glass) board and block must qualify to be semi-rigid or rigid. When tested, the board and block insulation shall not warp, flame, or glow during hot surface exposure. When tested, the midpoint temperature shall not at any time exceed the hot surface temperature by more than 200°F (111°C). Determine the thermal conductivity as a function of temperature for the representative specimens with data obtained from a series of thermal tests. The compressive resistance, linear shrinkage, water vapour sorption, odor emission, and rigidity or semi-rigidity shall be tested to meet the requirements prescribed.1.1 This specification covers the classification, composition, dimension, and physical properties of mineral fiber (rock, slag, or glass) semi-rigid and rigid board intended for the use as thermal insulation on surfaces operating at temperatures between 0°F (-18°C) and 1800°F (982°C). For specific applications, the actual temperature limits shall be agreed upon between the supplier and the purchaser.1.2 For satisfactory performance, properly installed protective vapor retarder or barriers shall be used on below ambient temperature applications to reduce movement of water through or around the insulation towards the colder surface. Failure to use a vapor retarder or barrier can lead to insulation and system damage. Refer to Practice C921 to aid material selection. Although vapor retarder properties are not part of this specification, properties required in Specification C1136 are pertinent to applications or performance.1.3 The orientation of the fibers within the boards is primarily parallel to the principal surface (face). This specification does not cover fabricated pipe and tank wrap insulation where the insulation has been cut and fabricated to provide a fiber orientation that is perpendicular to the surface (face).1.4 This standard does not purport to provide the performance requirements of hourly-rated fire systems. Consult the manufacturer for the appropriate system.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C612-14(2019)
标准名称:
Standard Specification for Mineral Fiber Block and Board Thermal Insulation
英文名称:
Standard Specification for Mineral Fiber Block and Board Thermal Insulation标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E316-17 Standard Test Method for Determination of Iron in Manganese Ores by Hydrogen Sulfide Reduction-Dichromate Titrimetry
- ASTM E3161-21 Standard Practice for Preparing a Pseudomonas aeruginosa or Staphylococcus aureus Biofilm using the CDC Biofilm Reactor
- ASTM E3163-18 Standard Guide for Selection and Application of Analytical Methods and Procedures Used during Sediment Corrective Action
- ASTM E3164-23 Standard Guide for Contaminated Sediment Site Risk-Based Corrective Action – Baseline, Remedy Implementation and Post-Remedy Monitoring Programs
- ASTM E3166-20e1 Standard Guide for Nondestructive Examination of Metal Additively Manufactured Aerospace Parts After Build
- ASTM E3168-20a Standard Practice for Determining Low-Contrast Visual Acuity of Radiographic Interpreters
- ASTM E317-21 Standard Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments
- ASTM E3170/E3170M-18(2023) Standard Practice for Phased Array Ultrasonic Testing of Polyethylene Electrofusion Joints
- ASTM E3171-21a Standard Test Method for Determination of Total Silver in Textiles by ICP-OES or ICP-MS Analysis
- ASTM E3178-18 Standard Practice for Evaluating Static and Cidal Chemical Decontaminants against Bacillus Spores using Centrifugal Filtration Tubes
- ASTM E3182-20 Standard Practice for Preparing an Occupant Exposure Screening Report (OESR) for Substances in Installed Building Products
- ASTM E3186-19 Standard Guide for Use and Testing of Dry-Block Temperature Calibrators
- ASTM E3191-18 Standard Specification for Permanent Foaming Fixatives Used to Mitigate Spread of Radioactive Contamination
- ASTM E3192/E3192M-20 Standard Practice for Soft Armor Conditioning by Tumbling
- ASTM E3197-23 Standard Terminology Relating to Examination of Fire Debris