
【国外标准】 Standard Classification for Bridge Elements—UNIFORMAT II
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This classification builds on the concepts and organizational framework first established in Classification E1557. This classification describes bridge elements that are major components of most highway, railroad, and pedestrian bridges. The elemental classification is the common thread linking activities and participants in a bridge project from initial planning through operations, maintenance, and disposal.NOTE 1: As this classification refers solely to permanent, physical parts of any construction, two additional classifications, Classifications E2083 and E2168, need to be included when calculating construction cost. These standards provide for the inclusion of construction enabling, temporary, and risk mitigation cost figures. Procedures for reporting all these figures are described in Practices E1804 and E2514 and Classification E2516. While these three latter standards were primarily written for building construction, they are nonetheless appropriate and readily applied to other forms of construction as well.4.2 The Users of Bridge UNIFORMAT II Include: 4.2.1 Financial and Investment—Typically owners, developers, bankers, lenders, accountants, and financial managers.4.2.2 Implementation—Primarily project managers; facilities programmers; designers, including engineers; and project controls specialists, including cost planners, estimators, schedulers, specification writers, and risk analysts.4.2.3 Facilities Management—Comprising property portfolio managers, operating staff, and maintenance staff.4.2.4 Others—Public officials, manufacturers, educators, students, and other project stakeholders.4.3 Apply This Classification When Undertaking the Following Work on Bridges:5 4.3.1 Financing and Investing:4.3.1.1 Structuring costs on an elemental basis for economic evaluations (Guide E1185 and Practices E917, E964, E1057, E1074, E1121, and E1804) early in the design process helps reduce the cost of early financial analysis and can contribute to substantial design and operational savings before decisions have been made that limit options for potential savings.4.3.2 Implementing: 4.3.2.1 Cost Modeling, Cost Planning, Estimating and Controlling Project Time and Cost During Planning, Design, and Construction—Use the bridge UNIFORMAT II classification to prepare budgets and to establish elemental cost plans before design begins. Project managers and project controls specialists use these cost plans against which to measure and control project cost, and quality, and to set design-to-cost targets.4.3.2.2 Conducting Value Engineering Workshops—Conducting value engineering workshops (Practices E1699 and E2013). Use this classification as a checklist to ensure that alternatives for all elements of significant cost in the bridge project are analyzed in the creativity phase of the job plan. Also, use the elemental cost data to expedite the development of cost models for bridge systems.4.3.2.3 Developing Initial Project Master Schedules—Since projects are essentially built element by element, UNIFORMAT II classifications are an appropriate basis for preparing construction schedules at the start of the design process. Project managers and project controls specialists use these time plans against which to measure and control project time (Practice E2691), and to set milestone target dates.4.3.2.4 Performing Risk Analyses—Simulation (Guides E1369 and E2506) is one technique for developing probability distributions of bridge costs when evaluating the economic risk in undertaking a bridge project. Use individual elements and group elements in this classification for developing probability distributions of elemental costs. From these distributions, build up probability distributions of total costs to establish project contingencies (Practice E1946 and Classification E2168) or to serve as inputs to an economic analysis.4.3.2.5 Structuring Preliminary Project Descriptions During the Conceptual Design Phase—This classification facilitates the description of the scope of the project in a clear, concise, and logical sequence for presentation to the client; it provides the basis for the preparation of more detailed elemental estimates during the early concept and preliminary design phases, and it enhances communication between designers and clients by providing a clear statement of the designer’s intent.4.3.2.6 Coding and Referencing Standard Details In Computer-Aided Design Systems—This classification allows a designer, for example, to reference an assembly according to this classification’s element designations and build up a database of standard details. This is particularly appropriate to design modeling and building information modeling (BIM) applications.4.3.3 Managing Facilities: 4.3.3.1 Recording and writing property condition assessment reports in a structured way, using UNIFORMAT II classifications, provides for a consistent, accessible, and searchable database of real property inventory.4.3.4 Other Activities: 4.3.4.1 Structuring cost manuals and recording construction, operating, and maintenance costs in a computer database. Having a cost manual or computer database in an elemental format assists the preparation of an economic analysis early in the design stage and at a reasonable cost.1.1 This standard establishes a classification of bridge elements within the UNIFORMAT II family of elemental classifications. It covers most highway bridges, railroad bridges, and pedestrian bridges.1.2 UNIFORMAT II classifications have an elemental format similar to the original UNIFORMAT2 building elemental classification. However, the title UNIFORMAT II differs from the original in that it now takes into consideration a wide range of constructed entities that collectively form the built environment.1.3 Elements, as defined here and in other UNIFORMAT II Classifications, are major physical components that are common within constructed entities. Elements perform their given function(s), regardless of the design specification, construction method, or materials used.1.4 This elemental classification serves as a consistent reference for analysis, evaluation, and monitoring during the feasibility, planning, and design stages when constructing bridges.1.5 Using UNIFORMAT II elemental classifications ensures a consistency in the economic evaluation of construction projects over time and from project to project.1.6 UNIFORMAT II classifications also enhance reporting at all stages of a constructed entity’s life cycle—from feasibility and planning through the preparation of working documents, construction, maintenance, rehabilitation, and disposal.1.7 This classification is unsuitable for process applications or for preparing trade estimates.1.8 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, each system shall be used independently of the other, and values from the two systems shall not be combined.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2103/E2103M-19
标准名称:
Standard Classification for Bridge Elements—UNIFORMAT II
英文名称:
Standard Classification for Bridge Elements—UNIFORMAT II标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM E2037-15 Standard Test Method for Bromine Chloride in Liquid Chlorine by High Performance Liquid Chromatography (HPLC)
- 下一篇: ASTM E2119-20 Standard Practice for Quality Systems for Conducting In Situ Measurements of Lead Content in Paint or Other Coatings Using Field-Portable X-Ray Fluorescence (XRF) Devices
- 推荐标准
- ASTM 51401-21 Standard Practice for Use of a Dichromate Dosimetry System
- ASTM 51956-21 Standard Practice for Use of a Thermoluminescence-Dosimetry System (TLD System) for Radiation Processing
- ASTM A1010/A1010M-24 Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1016/A1016M-24 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
- ASTM A105/A105M-24 Standard Specification for Carbon Steel Forgings for Piping Applications
- ASTM A1064/A1064M-24 Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete
- ASTM A108-24 Standard Specification for Steel Bar, Carbon and Alloy, Cold-Finished
- ASTM A1080/A1080M-24 Standard Practice for Hot Isostatic Pressing of Steel, Stainless Steel, and Related Alloy Castings
- ASTM A1090/A1090M-19(2024) Standard Specification for Forged Rings and Hollows for Use as Base Plates in Power Transmission Structures
- ASTM A1115/A1115M-24 Standard Practice for Construction of Mechanically Stabilized Earth Walls with Inextensible Soil Reinforcement
- ASTM A1128-24 Standard Specification for Stainless Steel Shielded, Rubber Gasketed Couplings Having an Integral Restraint Feature for Joining Hubless Cast Iron Soil Pipes and Fittings Where External Restraint Is Required
- ASTM A179/A179M-24 Standard Specification for Seamless Cold-Drawn Low-Carbon Steel Heat-Exchanger and Condenser Tubes
- ASTM A234/A234M-24 Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service
- ASTM A242/A242M-24 Standard Specification for High-Strength Low-Alloy Structural Steel
- ASTM A249/A249M-24a Standard Specification for Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes