
【国外标准】 Standard Test Method for Accelerated Tensile Creep and Creep-Rupture of Geosynthetic Materials Based on Time-Temperature Superposition Using the Stepped Isothermal Method
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Use of the Stepped Isothermal Method decreases the time required for creep to occur and the obtaining of the associated data.5.2 The statements set forth in 1.6 are very important in the context of significance and use, as well as scope of the standard.5.3 Creep test data are used to calculate the creep modulus of materials as a function of time. These data are then used to predict the long-term creep deformation expected of geosynthetics used in reinforcement applications.NOTE 1: Currently, SIM testing has focused mainly on woven and knitted geogrids and woven geotextiles made from polyester, aramid, polyaramid, poly-vinyl alcohol (PVA), and polypropylene yarns and narrow strips. Additional correlation studies on other materials are needed.5.4 Creep-rupture test data are used to develop a regression line relating creep stress to rupture time. These results predict the long-term rupture strength expected for geosynthetics in reinforcement applications.5.5 Tensile testing is used to establish the ultimate tensile strength (TULT) of a material and to determine elastic stress, strain, and variations thereof for SIM tests.5.6 Ramp and Hold (R+H) testing is done to establish the range of creep strains experienced in the brief period of very rapid response following the peak of the load ramp.1.1 This test method covers accelerated testing for tensile creep, and tensile creep-rupture properties using the Stepped Isothermal Method (SIM).1.2 The test method is focused on geosynthetic reinforcement materials such as yarns, ribs of geogrids, or narrow geotextile specimens.1.3 The SIM tests are laterally unconfined tests based on time-temperature superposition procedures.1.4 Tensile tests are to be completed before SIM tests and the results are used to determine the stress levels for subsequent SIM tests defined in terms of the percentage of Ultimate Tensile Strength (TULT). Additionally, the tensile test can be designed to provide estimates of the initial elastic strain distributions appropriate for the SIM results.1.5 Ramp and Hold (R+H) tests may be completed in conjunction with SIM tests. They are designed to provide additional estimates of the initial elastic and initial rapid creep strain levels appropriate for the SIM results.1.6 This method can be used to establish the sustained load creep and creep-rupture characteristics of a geosynthetic. Results of this method are to be used to augment results of Test Method D5262 and may not be used as the sole basis for determination of long-term creep and creep-rupture behavior of geosynthetic material.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6992-16(2023)
标准名称:
Standard Test Method for Accelerated Tensile Creep and Creep-Rupture of Geosynthetic Materials Based on Time-Temperature Superposition Using the Stepped Isothermal Method
英文名称:
Standard Test Method for Accelerated Tensile Creep and Creep-Rupture of Geosynthetic Materials Based on Time-Temperature Superposition Using the Stepped Isothermal Method标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D6991-17(2022) Standard Test Method for Measurements of Internal Stresses in Organic Coatings by Cantilever (Beam) Method
- 下一篇: ASTM D6994-15 Standard Test Method for Determination of Metal Cyanide Complexes in Wastewater, Surface Water, Groundwater and Drinking Water Using Anion Exchange Chromatography with UV Detection
- 推荐标准
- ASTM E316-17 Standard Test Method for Determination of Iron in Manganese Ores by Hydrogen Sulfide Reduction-Dichromate Titrimetry
- ASTM E3161-21 Standard Practice for Preparing a Pseudomonas aeruginosa or Staphylococcus aureus Biofilm using the CDC Biofilm Reactor
- ASTM E3163-18 Standard Guide for Selection and Application of Analytical Methods and Procedures Used during Sediment Corrective Action
- ASTM E3164-23 Standard Guide for Contaminated Sediment Site Risk-Based Corrective Action – Baseline, Remedy Implementation and Post-Remedy Monitoring Programs
- ASTM E3166-20e1 Standard Guide for Nondestructive Examination of Metal Additively Manufactured Aerospace Parts After Build
- ASTM E3168-20a Standard Practice for Determining Low-Contrast Visual Acuity of Radiographic Interpreters
- ASTM E317-21 Standard Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments
- ASTM E3170/E3170M-18(2023) Standard Practice for Phased Array Ultrasonic Testing of Polyethylene Electrofusion Joints
- ASTM E3171-21a Standard Test Method for Determination of Total Silver in Textiles by ICP-OES or ICP-MS Analysis
- ASTM E3178-18 Standard Practice for Evaluating Static and Cidal Chemical Decontaminants against Bacillus Spores using Centrifugal Filtration Tubes
- ASTM E3182-20 Standard Practice for Preparing an Occupant Exposure Screening Report (OESR) for Substances in Installed Building Products
- ASTM E3186-19 Standard Guide for Use and Testing of Dry-Block Temperature Calibrators
- ASTM E3191-18 Standard Specification for Permanent Foaming Fixatives Used to Mitigate Spread of Radioactive Contamination
- ASTM E3192/E3192M-20 Standard Practice for Soft Armor Conditioning by Tumbling
- ASTM E3197-23 Standard Terminology Relating to Examination of Fire Debris