
【国外标准】 Standard Practice for Evaluating Tire Traction Performance Data Under Varying Test Conditions
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
This practice covers the required correction procedures for examining sequential control tire data for any systematic or bias (not random) variation due to changing test conditions that may influence absolute and also comparative performance of candidate tires, as they are tested over any short or extended time period. The procedures provided here may be used for any repetitive tire traction testing in any environment (for example, dry, wet, snow, ice) where test conditions are subject to change. This practice does not address the issue of rejecting outlier data points or test values that might occur among a set of otherwise acceptable data values obtained under identical test conditions in a short time period. Method A uses the initial operational conditions defined by the first control traction test as a reference point. The calculations correct all traction test performance parameters (for example, traction coefficients) to the initial level or condition of the pavement or other testing conditions, or both. With this method, corrections may be made after only a few candidate and control sets have been evaluated. Method B uses essentially the midpoint of any evaluation program, with the grand average traction test value as a reference point. This grand average value is obtained with higher precision than the initial control traction test average of Method A because it contains more values. However, Method B corrections cannot be made until the grand average value is established, which is normally at the end of any program.1.1 This practice covers the required procedures for examining sequential control tire data for any variation due to changing test conditions. Such variations may influence absolute and also comparative performance of candidate tires, as they are tested over any short or extended time period. The variations addressed in this practice are systematic or bias variations and not random variations. See Appendix X1 for additional details.1.1.1 Two types of variation may occur: time or test sequence “trend variations,” either linear or curvilinear, and the less common transient or abrupt shift variations. If any observed variations are declared to be statistically significant, the calculation procedures are given to correct for the influence of these variations. This approach is addressed in Method A.1.2 In some testing programs, a policy is adopted to correct all candidate traction test data values without the application of a statistical routine to determine if a significant trend or shift is observed. This option is part of this practice and is addressed in Method B.1.3 The issue of rejecting outlier data points or test values that might occur among a set of otherwise acceptable data values obtained under identical test conditions in a short time period is not part of this practice. Specific test method or other outlier rejection standards that address this issue may be used on the individual data sets prior to applying this practice and its procedures.1.4 Although this practice applies to various types of tire traction testing (for example, dry, wet, snow, ice), the procedures as given in this practice may be used for any repetitive tire testing in an environment where test conditions are subject to change.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F1650-21
标准名称:
Standard Practice for Evaluating Tire Traction Performance Data Under Varying Test Conditions
英文名称:
Standard Practice for Evaluating Tire Traction Performance Data Under Varying Test Conditions标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3016/F3016M-19 Standard Test Method for Surrogate Testing of Vehicle Impact Protective Devices at Low Speeds
- ASTM F3019/F3019M-19 Standard Specification for Chromium Free Zinc-Flake Composite, with or without Integral Lubricant, Corrosion Protective Coatings for Fasteners
- ASTM F302-09(2021) Standard Practice for Field Sampling of Aerospace Fluids in Containers
- ASTM F3021-17 Standard Specification for Universal Design of Fitness Equipment for Inclusive Use by Persons with Functional Limitations and Impairments
- ASTM F3022-16e1 Standard Test Method for Evaluating the Universal Design of Fitness Equipment for Inclusive Use by Persons with Functional Limitations and Impairments
- ASTM F3023-18 Standard Test Methods for Evaluating Design and Performance Characteristics of Stationary Upright and Recumbent Exercise Bicycles and Upper and Total Body Ergometers
- ASTM F3026-14(2019) Standard Guide for Helicopter Inland Search and Rescue (SAR) Crew Chief
- ASTM F3027-18 Standard Guide for Training of Personnel Operating in Mountainous Terrain (Mountain Endorsement)
- ASTM F3033-16(2021) Standard Practice for Installation of a Single-Sized, Cured-In-Place Liner Utilizing an Inflatable Bladder for Resurfacing Manhole Walls of Various Shapes and Sizes
- ASTM F3034-21 Standard Specification for Billets made by Winding Molten Extruded Stress-Rated High Density Polyethylene (HDPE)
- ASTM F3035-22 Standard Practice for Production Acceptance in the Manufacture of a Fixed Wing Light Sport Aircraft
- ASTM F3036-21 Standard Guide for Testing Absorbable Stents
- ASTM F3038-21 Standard Test Method for Timed Evaluation of Forced-Entry-Resistant Systems
- ASTM F3043-15 Standard Specification for “Twist Off” Type Tension Control Structural Bolt/Nut/Washer Assemblies, Alloy Steel, Heat Treated, 200 ksi Minimum Tensile Strength
- ASTM F3045-21 Standard Test Method for Evaluation of the Type and Viscoelastic Stability of Water-in-oil Mixtures Formed from Crude Oil and Petroleum Products Mixed with Water