
【国外标准】 Standard Test Method to Determine Melting Temperature of Synthetic Fibers
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Either of these two test methods is used to determine the temperature at which a synthetic fiber specimen changes from a solid to a liquid-like state. 5.1.1 Synthetic fibers may be either amorphous or semi-crystalline thermoplastics or thermosets. Synthetic fibers may change from the solid to a liquid-like state on heating because of the glass transition of amorphous polymers, the melting of crystalline regions of semi-crystalline polymers, or at the onset of degradation. Thermoplastic fibers consist of crystalline and amorphous regions and may be manufactured with a range of molecular weights. The amorphous and crystalline fiber structure and variable molecular weight can lead to a melting temperature range instead of a discreet melting point (see Table X1.1). 5.2 This test method is considered satisfactory for acceptance testing of commercial shipments. 5.2.1 If there are differences of practical significance between reported test results for two or more laboratories, perform comparative testing to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, use the samples for such a comparative test that are as homogeneous as possible, drawn from the same lot of material as the samples that resulted in disparate results during initial testing and randomly assigned in equal numbers to each laboratory. Compare the test results from the laboratories involved using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias. 5.3 This test method is suitable for quality control testing of synthetic fibers and product comparisons of different fibers by manufacturers, retailers, and users. 5.4 If the test method is used to identify fiber material type, it is important to test a known reference material at the same laboratory with the same test method to confirm the fiber identification. In addition, since some fiber types have similar melting temperatures or overlapping melting temperature ranges as show in Table X1.1, secondary methods for fiber identification as described in Test Methods D276 will be required to make fiber identifications. 1.1 Either of two test methods are used to determine the melting temperature of thermoplastic fibers, yarns, or threads. 1.2 Method 1 can be used to determine melting temperatures for blends of multiple fiber material types. Method 2 can only be used to determine the melting temperature of a single fiber material type. 1.2.1 Method 1, Differential Scanning Calorimetry (DSC), measures changes in heat capacity and will detect the glass transition, the crystalline melting and endothermic thermal degradation. 1.2.2 Method 2, a visual determination of melting, determines any change that visually appears as a transition from a solid to a liquid state. 1.2.3 Due to the differences in what each test method measures, the results from Method 1 and Method 2 cannot be compared. 1.3 The values stated in either SI units or other units are to be regarded separately. The values stated in each system are not exact equivalents; therefore, each system shall be used independently without combining values. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM D7138-16
标准名称:
Standard Test Method to Determine Melting Temperature of Synthetic Fibers
英文名称:
Standard Test Method to Determine Melting Temperature of Synthetic Fibers标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E1415-22 Standard Guide for Conducting Static Toxicity Tests With Lemna gibba G3
- ASTM E1416-23 Standard Practice for Radioscopic Examination of Weldments
- ASTM E1421-99(2021) Standard Practice for Describing and Measuring Performance of Fourier Transform Mid-Infrared (FT-MIR) Spectrometers: Level Zero and Level One Tests
- ASTM E1424-22 Standard Test Method for Determining the Rate of Air Leakage Through Exterior Windows, Skylights, Curtain Walls, and Doors Under Specified Pressure and Temperature Differences Across the Specimen
- ASTM E1426-14(2019)e1 Standard Test Method for Determining the X-Ray Elastic Constants for Use in the Measurement of Residual Stress Using X-Ray Diffraction Techniques
- ASTM E1432-19 Standard Practice for Defining and Calculating Individual and Group Sensory Thresholds from Forced-Choice Data Sets of Intermediate Size
- ASTM E1439-12(2019) Standard Guide for Conducting the Frog Embryo Teratogenesis Assay-Xenopus (FETAX)
- ASTM E1440-23 Standard Guide for Acute Toxicity Test with the Rotifer Brachionus
- ASTM E1444/E1444M-22a Standard Practice for Magnetic Particle Testing for Aerospace
- ASTM E1448/E1448M-09(2023) Standard Practice for Calibration of Systems Used for Measuring Vehicular Response to Pavement Roughness
- ASTM E1453-20 Standard Guide for Storage of Magnetic Tape Media that Contains Analog or Digital Radioscopic Data
- ASTM E1458-12(2022) Standard Test Method for Calibration Verification of Laser Diffraction Particle Sizing Instruments Using Photomask Reticles
- ASTM E1459-13(2018) Standard Guide for Physical Evidence Labeling and Related Documentation
- ASTM E1461-13(2022) Standard Test Method for Thermal Diffusivity by the Flash Method
- ASTM E1473-22 Standard Test Methods for Chemical Analysis of Nickel, Cobalt, and High-Temperature Alloys