
【国外标准】 Standard Practice for Subcutaneous Screening Test for Implant Materials
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This practice is a guideline for a short-term screening test for the evaluation of the tissue response to materials that may be selected for implantation in the human body and should be done in accordance with good laboratory practices. This test may be performed prior to long-term testing (for example, Practice F981) to eliminate unsuitable candidate materials early and to avoid unnecessary animal testing.4.2 This practice may be used to detect toxic effects of materials in general (see Appendix X1). However, it is particularly suitable for the testing of materials that are intended to have contact with subcutaneous tissues or soft tissues in general. For materials intended to be inserted specifically into muscle tissues, Practice F763 should be considered as a short-term test method.4.3 The suggested implant specimens are cylindrical. A special grooved type of cylinder may be used (see Fig. X2.1 of Appendix X2) to allow tissue interlocking that could keep the implant in place and minimize tissue irritation through motion at the interface that otherwise could contribute to increased variance of the results. In case ungrooved cylinders are used (see Fig. X1.2 of Appendix X2), probable motion at the implant/tissue interface must be taken into account. Control cylinders should be shaped like the test cylinders.4.4 The type of surface preparation of the specimens can affect the tissue reaction; therefore the preparation procedure should be noted in the report. The test may be used to compare the effect of different surface structures or conditions of the same material or to assess the effect of various treatments of modifications of a material.NOTE 1: If this method is used for material research, testing for endotoxin prior to implantation should be considered.1.1 This practice covers a short-term testing method to screen the subcutaneous tissue reaction to implant candidate materials in small laboratory animals. The material may be dense or porous. This method may not work for absorbable materials, depending on the absorption kinetics. The tissue reactions will be evaluated in comparison to those evoked by control materials that are accepted as clinical implant materials.1.2 This practice, along with other appropriate biological tests (including other ASTM test methods), may be used to assess the biocompatibility of candidate materials for use in the fabrication of devices for clinical application. It may also be applied to evaluate the effect of special surface textures and preparations of known materials.1.3 This practice does not provide a comprehensive assessment of the systemic toxicity, carcinogenicity, teratogenicity, or mutagenicity of the material. Additional information may be needed on the material in its final finished form, such as implantation assessment at the clinically relevant location.1.4 The values stated in SI units, including units officially accepted for use with SI, are to be regarded as standard. No other systems of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F1408-20a
标准名称:
Standard Practice for Subcutaneous Screening Test for Implant Materials
英文名称:
Standard Practice for Subcutaneous Screening Test for Implant Materials标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F2044-09(2019)e1 Standard Specification for Liquid Level Indicating Equipment, Electrical
- ASTM F2046-00(2022) Standard Specification for Tachometers, Various
- ASTM F2049-11(2017) Standard Safety Performance Specification for Fences/Barriers for Public, Commercial, and Multi-Family Residential Use Outdoor Play Areas
- ASTM F2050-19 Standard Consumer Safety Specification for Hand-Held Infant Carriers
- ASTM F2051-00(2022) Standard Specification for Implantable Saline-Filled Breast Prostheses
- ASTM F2054/F2054M-13(2020) Standard Test Method for Burst Testing of Flexible Package Seals Using Internal Air Pressurization Within Restraining Plates
- ASTM F2055-17(2021) Standard Test Method for Size and Squareness of Resilient Floor Tile by Dial Gauge Method
- ASTM F2059-21 Standard Test Method for Laboratory Oil Spill Dispersant Effectiveness Using the Swirling Flask
- ASTM F2061-17 Standard Practice for Chemical Protective Clothing: Wearing, Care, and Maintenance Instructions
- ASTM F2062-00(2018) Standard Specification for Square Drive Interconnections on Surgical Instruments
- ASTM F2064-17 Standard Guide for Characterization and Testing of Alginates as Starting Materials Intended for Use in Biomedical and Tissue Engineered Medical Product Applications
- ASTM F2075-20 Standard Specification for Engineered Wood Fiber for Use as a Playground Safety Surface Under and Around Playground Equipment
- ASTM F2076-01(2022) Standard Practice for Communicating an EMS Patient Report to Receiving Medical Facilities
- ASTM F2080-23 Standard Specification for Cold-Expansion Fittings with Metal Compression-Sleeves for Crosslinked Polyethylene (PEX) Pipe and SDR9 Polyethylene of Raised Temperature (PE-RT) Pipe
- ASTM F2082/F2082M-23 Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery