
【国外标准】 Standard Specification for Composite Ribbed Steel Pipe, Precoated and Polyethylene Lined for Gravity Flow Sanitary Sewers, Storm Sewers, and Other Special Applications (Withdrawn 2020)
本网站 发布时间:
2024-02-28
- ASTM A978/A978M-08(2013)
- Withdrawn, No replacement
- 定价: 0元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
This specification covers composite ribbed steel pipe, precoated and polyethyene lined intended for use for gravity flow sanitary sewers, storm sewers, and other special applications such as water transmission pipe, rehabilitation pipe, slip line pipe, and irrigation pipe. Pipes shall be fabricated in full circular cross-section with helical lock seams and helical ribs projecting outwardly. Specimens cut from production pipe normal to and across the lock seam shall conform to the required values of tensile strength. The pipe shall conform to the required values of nominal inside diameter and sheet thickness. Joint connectors for composite ribbed steel pipe precoated and polyethylene lined shall be specified as soil tight, water-resistant, or watertight.1.1 This specification covers composite ribbed steel pipe, precoated and polyethylene lined intended for use for gravity flow sanitary sewers, storm sewers, and other special applications such as water transmission pipe, rehabilitation pipe, slip line pipe, and irrigation pipe where extra corrosion and abrasion resistance are required. The steel sheet used in the fabrication of the pipe has a polymer coating over a metallic coating of zinc on both sides. In addition, as the pipe is being fabricated, the ribs are filled with polyethylene and then a polyethylene liner is extruded onto the interior surface.1.2 The exterior polymer precoating provides extra protection of the steel against soilside corrosion, in addition to that provided by the metallic coating, and also provides a dielectric barrier for cathodic protection. The interior polymer precoating provides an adhesive layer between the galvanized steel and the polyethylene lining. The applied lining provides internal protection against corrosion, erosion, and abrasion. By filling the rib which has a deltoid shape (smaller at the opening in the pipe wall than at the bottom of the rib), the polyethylene is mechanically connected to the pipe wall and the polyethylene liner is then thermally bonded to the filled rib.1.3 This specification does not include requirements for bedding, backfill, or the relationship between earth cover load and sheet thickness of the pipe. Experience has shown that the successful performance of this product depends upon the proper selection of sheet thickness, type of bedding and backfill, controlled manufacture in the plant, and care in the installation. The installation procedure is described in Practice A798/A798M.1.4 This specification is applicable to orders in either inch-pound units as A978, or in SI units as A978M. Inch-pound units and SI units are not necessarily equivalent. SI units are shown in brackets in the text for clarity, but they are the applicable values when the material is ordered to A978M.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM A978/A978M-08(2013)
标准名称:
Standard Specification for Composite Ribbed Steel Pipe, Precoated and Polyethylene Lined for Gravity Flow Sanitary Sewers, Storm Sewers, and Other Special Applications (Withdrawn 2020)
英文名称:
Standard Specification for Composite Ribbed Steel Pipe, Precoated and Polyethylene Lined for Gravity Flow Sanitary Sewers, Storm Sewers, and Other Special Applications (Withdrawn 2020)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E1815-18(2023) Standard Test Method for Classification of Film Systems for Industrial Radiography
- ASTM E1820-23b Standard Test Method for Measurement of Fracture Toughness
- ASTM E1822-21 Standard Test Method for Fire Testing of Stacked Chairs
- ASTM E1823-23 Standard Terminology Relating to Fatigue and Fracture Testing
- ASTM E1826-23 Standard Specification for Low Volatile Organic Compound (VOC) Corrosion-Inhibiting Adhesive Primer for Aluminum Alloys to Be Adhesively Bonded in Honeycomb Shelter Panels
- ASTM E1827-22 Standard Test Methods for Determining Airtightness of Buildings Using an Orifice Blower Door
- ASTM E1829-14(2020) Standard Guide for Handling Specimens Prior to Surface Analysis
- ASTM E1832-08(2017) Standard Practice for Describing and Specifying a Direct Current Plasma Atomic Emission Spectrometer
- ASTM E1834-18 Standard Test Method for Analysis of Nickel Alloys by Graphite Furnace Atomic Absorption Spectrometry
- ASTM E1835-14(2022) Standard Test Method for Analysis of Nickel Alloys by Flame Atomic Absorption Spectrometry
- ASTM E1845-23 Standard Practice for Calculating Pavement Macrotexture Mean Profile Depth
- ASTM E1851-21 Standard Test Method for Electromagnetic Shielding Effectiveness of Durable Rigid Wall Relocatable Structures
- ASTM E1854-19 Standard Practice for Ensuring Test Consistency in Neutron-Induced Displacement Damage of Electronic Parts
- ASTM E1856-13(2021) Standard Guide for Evaluating Computerized Data Acquisition Systems Used to Acquire Data from Universal Testing Machines
- ASTM E1857-97(2021) Standard Guide for Selection of Cleaning Techniques for Masonry, Concrete, and Stucco Surfaces