
【国外标准】 Standard Practice for Probability of Detection Analysis for â Versus a Data
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The POD analysis method described herein is based on well-known and well-established statistical methods. It shall be used to quantify the demonstrated POD for a specific set of examination parameters and known range of discontinuity sizes under the following conditions.5.1.1 The initial response from a nondestructive evaluation inspection system is measurable and can be classified as a continuous variable.5.1.2 Discontinuity size is the predictor variable and can be accurately quantified.5.1.3 The relationship between discontinuity size (a) and measured signal response (â) exists and is best described by a linear regression model with an error structure that is normally distributed with mean zero and constant variance, σ2. (Note that in linear regression, “linear” means linear with respect to the model coefficients. Though a quadratic modeldoes not have a linear shape when plotted, for example, it is classified as a linear model in regression analysis since it is linear with respect to the model coefficients.)5.2 This practice does not limit the use of a linear regression model with more than one predictor variable or other statistical models if justified as more appropriate for the â versus a data.5.3 This practice is not appropriate for data resulting from a POD examination on nondestructive evaluation systems that generate an initial response that is binary in nature (for example, hit/miss). Practice E2862 is appropriate for systems that generate a hit/miss-type response (for example, fluorescent penetrant).5.4 Prior to performing the analysis, it is assumed that the discontinuity of interest is clearly defined; the number and distribution of induced discontinuity sizes in the POD specimen set is known and well documented; the POD examination administration procedure (including data collection method) is well designed, well defined, under control, and unbiased (see X1.2.2 for more detail); the initial inspection system response is measurable and continuous in nature; the inspection system is calibrated; and the measurement error has been evaluated and deemed acceptable. The analysis results are only valid if the â versus a data are accurate and precise and the linear model adequately represents the â versus a data.5.5 The POD analysis method described herein is consistent with the analysis method for â versus a data described in MIL-HDBK-1823A and is included in several widely utilized POD software packages to perform a POD analysis on â versus a data. It is also found in statistical software packages that have linear regression analysis capability. This practice requires that the analyst has access to either POD software or other software with linear regression analysis capability.1.1 This practice defines the procedure for performing a statistical analysis on Nondestructive Testing (NDT) â versus a data to determine the demonstrated probability of detection (POD) for a specific set of examination parameters. Topics covered include the standard â versus a regression methodology, POD curve formulation, validation techniques, and correct interpretation of results.1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E3023-21
标准名称:
Standard Practice for Probability of Detection Analysis for â Versus a Data
英文名称:
Standard Practice for Probability of Detection Analysis for â Versus a Data标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E747-18 Standard Practice for Design, Manufacture and Material Grouping Classification of Wire Image Quality Indicators (IQI) Used for Radiology
- ASTM E749/E749M-17(2021) Standard Practice for Acoustic Emission Monitoring During Continuous Welding
- ASTM E751/E751M-17(2022) Standard Practice for Acoustic Emission Monitoring During Resistance Spot-Welding
- ASTM E756-05(2023) Standard Test Method for Measuring Vibration-Damping Properties of Materials
- ASTM E759/E759M-92(2023) Standard Test Method for Effect of Deflection on Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E760/E760M-92(2023) Standard Test Method for Effect of Impact on Bonding of Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E761/E761M-92(2023) Standard Test Method for Compressive Strength of Sprayed Fire-Resistive Material Applied to Structural Members
- ASTM E768-99(2018) Standard Guide for Preparing and Evaluating Specimens for Automatic Inclusion Assessment of Steel
- ASTM E776-23 Standard Test Method for Determination of Forms of Chlorine in Refuse-Derived Fuel
- ASTM E778-15(2021) Standard Test Methods for Nitrogen in Refuse-Derived Fuel Analysis Samples
- ASTM E779-19 Standard Test Method for Determining Air Leakage Rate by Fan Pressurization
- ASTM E780-17(2021) Standard Test Method for Measuring the Insulation Resistance of Mineral-Insulated, Metal-Sheathed Thermocouples and Mineral-Insulated, Metal-Sheathed Cable at Room Temperature
- ASTM E781-86(2023) Standard Practice for Evaluating Absorptive Solar Receiver Materials When Exposed to Conditions Simulating Stagnation in Solar Collectors with Cover Plates
- ASTM E782-95(2022) Standard Practice for Exposure of Cover Materials for Solar Collectors to Natural Weathering Under Conditions Simulating Operational Mode
- ASTM E784-89(2022) Standard Specification for Clamps, Utility, Laboratory, and Holders, Buret and Clamp