
【国外标准】 Standard Guide for General Design Considerations for Hot Cell Equipment
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 The purpose of this guide is to provide general guidelines for the design and operation of hot cell equipment to ensure longevity and reliability throughout the period of service.4.2 It is intended that this guide record the general conditions and practices that experience has shown is necessary to minimize equipment failures and maximize the effectiveness and utility of hot cell equipment. It is also intended to alert designers to those features that are highly desirable for the selection of equipment that has proven reliable in high radiation environments.4.3 This guide is intended as a supplement to other standards, and to federal and state regulations, codes, and criteria applicable to the design of equipment intended for hot cell use.4.4 This guide is intended to be generic and to apply to a wide range of types and configurations of hot cell equipment.1.1 Intent: 1.1.1 The intent of this guide is to provide general design and operating considerations for the safe and dependable operation of remotely operated hot cell equipment. Hot cell equipment is hardware used to handle, process, or analyze nuclear or radioactive material in a shielded room. The equipment is placed behind radiation shield walls and cannot be directly accessed by the operators or by maintenance personnel because of the radiation exposure hazards. Therefore, the equipment is operated remotely, either with or without the aid of viewing.1.1.2 This guide may apply to equipment in other radioactive remotely operated facilities such as suited entry repair areas, canyons or caves, but does not apply to equipment used in commercial power reactors.1.1.3 This guide does not apply to equipment used in gloveboxes.1.2 Applicability: 1.2.1 This guide is intended for persons who are tasked with the planning, design, procurement, fabrication, installation, or testing of equipment used in remote hot cell environments.1.2.2 The equipment will generally be used over a long-term life cycle (for example, in excess of two years), but equipment intended for use over a shorter life cycle is not excluded.1.2.3 The system of units employed in this standard is the metric unit, also known as SI Units, which are commonly used for International Systems, and defined by IEEE/ASTM SI 10: American National Standard for Use of the International System of Units (SI): The Modern Metric System.1.3 Caveats: 1.3.1 This guide does not address considerations relating to the design, construction, operation, or safety of hot cells, caves, canyons, or other similar remote facilities. This guide deals only with equipment intended for use in hot cells.1.3.2 Specific design and operating considerations are found in other ASTM documents.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C1533-15(2022)
标准名称:
Standard Guide for General Design Considerations for Hot Cell Equipment
英文名称:
Standard Guide for General Design Considerations for Hot Cell Equipment标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E3168-20a Standard Practice for Determining Low-Contrast Visual Acuity of Radiographic Interpreters
- ASTM E317-21 Standard Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments
- ASTM E3170/E3170M-18(2023) Standard Practice for Phased Array Ultrasonic Testing of Polyethylene Electrofusion Joints
- ASTM E3171-21a Standard Test Method for Determination of Total Silver in Textiles by ICP-OES or ICP-MS Analysis
- ASTM E3178-18 Standard Practice for Evaluating Static and Cidal Chemical Decontaminants against Bacillus Spores using Centrifugal Filtration Tubes
- ASTM E3182-20 Standard Practice for Preparing an Occupant Exposure Screening Report (OESR) for Substances in Installed Building Products
- ASTM E3186-19 Standard Guide for Use and Testing of Dry-Block Temperature Calibrators
- ASTM E3191-18 Standard Specification for Permanent Foaming Fixatives Used to Mitigate Spread of Radioactive Contamination
- ASTM E3192/E3192M-20 Standard Practice for Soft Armor Conditioning by Tumbling
- ASTM E3197-23 Standard Terminology Relating to Examination of Fire Debris
- ASTM E3199-22a Standard Guide for Alternative Allocation Approaches to Modeling Input and Output Flows of Secondary Materials and Related Recycling Scenarios in Life Cycle Assessment
- ASTM E3200-21 Standard Guide for Investment Analysis in Environmentally Sustainable Manufacturing
- ASTM E3208-20 Standard Specification for Minimum Equipment Requirements for Mobile Surface Contaminant Classification and Measurement Equipment
- ASTM E3209/E3209M-20 Standard Test Method for Pavement Thickness by Magnetic Pulse Induction
- ASTM E321-20 Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Neodymium-148 Method)