
【国外标准】 Standard Practice for (Analytical Procedures) Determining Transmissivity of Confined Nonleaky Aquifers by Critically Damped Well Response to Instantaneous Change in Head (Slug)
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
6.1 The assumptions of the physical system are given as follows:6.1.1 The aquifer is of uniform thickness, with impermeable upper and lower confining boundaries.6.1.2 The aquifer is of constant homogeneous porosity and matrix compressibility and constant homogeneous and isotropic hydraulic conductivity.6.1.3 The origin of the cylindrical coordinate system is taken to be on the well-bore axis at the top of the aquifer.6.1.4 The aquifer is fully screened.6.1.5 The well is 100 % efficient, that is, the skin factor, f, and dimensionless skin factor, σ, are zero.6.2 The assumptions made in defining the momentum balance are as follows:6.2.1 The average water velocity in the well is approximately constant over the well-bore section.6.2.2 Frictional head losses from flow in the well are negligible.6.2.3 Flow through the well screen is uniformly distributed over the entire aquifer thickness.6.2.4 Change in momentum from the water velocity changing from radial flow through the screen to vertical flow in the well are negligible.NOTE 1: Slug and pumping tests implicitly assume a porous medium. Fractured rock and carbonate settings may not provide meaningful data and information.NOTE 2: The function of wells in any unconfined setting in a fractured terrain might make the determination of k problematic because the wells might only intersect tributary or subsidiary channels or conduits. The problems determining the k of a channel or conduit notwithstanding, the partial penetration of tributary channels may make a determination of a meaningful number difficult. If plots of k in carbonates and other fractured settings are made and compared, they may show no indication that there are conduits or channels present, except when with the lowest probability one maybe intersected by a borehole and can be verified, such problems are described by (5) Smart (1999). Additional guidance can be found in Guide D5717.NOTE 3: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This practice covers determination of transmissivity from the measurement of water-level response to a sudden change of water level in a well-aquifer system characterized as being critically damped or in the transition range from underdamped to overdamped. Underdamped response is characterized by oscillatory changes in water level; overdamped response is characterized by return of the water level to the initial static level in an approximately exponential manner. Overdamped response is covered in Guide D4043; underdamped response is covered in Practice D5785/D5785M, Guide D4043.1.2 The analytical procedure in this practice is used in conjunction with Guide D4043 and the field procedure in Test Method D4044/D4044M for collection of test data.1.3 Limitations—Slug tests are considered to provide an estimate of the transmissivity of an aquifer near the well screen. The method is applicable for systems in which the damping parameter, ζ, is within the range from 0.2 through 5.0. The assumptions of the method prescribe a fully penetrating well (a well open through the full thickness of the aquifer) in a confined, nonleaky aquifer.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of results in units other than SI shall not be regarded as nonconformance with this standard.1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of the practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without the consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through he ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D5881-20
标准名称:
Standard Practice for (Analytical Procedures) Determining Transmissivity of Confined Nonleaky Aquifers by Critically Damped Well Response to Instantaneous Change in Head (Slug)
英文名称:
Standard Practice for (Analytical Procedures) Determining Transmissivity of Confined Nonleaky Aquifers by Critically Damped Well Response to Instantaneous Change in Head (Slug)标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM E316-17 Standard Test Method for Determination of Iron in Manganese Ores by Hydrogen Sulfide Reduction-Dichromate Titrimetry
- ASTM E3161-21 Standard Practice for Preparing a Pseudomonas aeruginosa or Staphylococcus aureus Biofilm using the CDC Biofilm Reactor
- ASTM E3163-18 Standard Guide for Selection and Application of Analytical Methods and Procedures Used during Sediment Corrective Action
- ASTM E3164-23 Standard Guide for Contaminated Sediment Site Risk-Based Corrective Action – Baseline, Remedy Implementation and Post-Remedy Monitoring Programs
- ASTM E3166-20e1 Standard Guide for Nondestructive Examination of Metal Additively Manufactured Aerospace Parts After Build
- ASTM E3168-20a Standard Practice for Determining Low-Contrast Visual Acuity of Radiographic Interpreters
- ASTM E317-21 Standard Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments
- ASTM E3170/E3170M-18(2023) Standard Practice for Phased Array Ultrasonic Testing of Polyethylene Electrofusion Joints
- ASTM E3171-21a Standard Test Method for Determination of Total Silver in Textiles by ICP-OES or ICP-MS Analysis
- ASTM E3178-18 Standard Practice for Evaluating Static and Cidal Chemical Decontaminants against Bacillus Spores using Centrifugal Filtration Tubes
- ASTM E3182-20 Standard Practice for Preparing an Occupant Exposure Screening Report (OESR) for Substances in Installed Building Products
- ASTM E3186-19 Standard Guide for Use and Testing of Dry-Block Temperature Calibrators
- ASTM E3191-18 Standard Specification for Permanent Foaming Fixatives Used to Mitigate Spread of Radioactive Contamination
- ASTM E3192/E3192M-20 Standard Practice for Soft Armor Conditioning by Tumbling
- ASTM E3197-23 Standard Terminology Relating to Examination of Fire Debris